Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4370–4378 | Cite as

Experimental and modeling study of the thermal conductivity of SiCp/Al composites with bimodal size distribution

  • Ke ChuEmail author
  • Chengchang Jia
  • Xuebing Liang
  • Hui Chen
  • Hong Guo
  • Fazhang Yin
  • Xuanhui Qu
Article

Abstract

The thermal conductivity of SiCp/Al composites with high volume fractions of 46 to 68% has been investigated. The composites were fabricated by pressureless infiltrating liquid aluminum into SiC preforms with monomodal and bimodal size distributions. The density measurement indicates that a small amount of pores is presented for the composites approaching their maximum volume fractions. An analytical model with an explicit expression is proposed for describing the thermal conductive behavior of the composites with multimodal-reinforced mixtures in terms of an effective medium approach taking into account the porosity effect. Predictions of the developed effective medium expression reveal good correspondence with the experimental results, and explore how each of the considered factors (i.e., particle size ratio, volume fraction ratio, and porosity) can have a significant effect on the thermal conductivity of the composites with bimodal mixtures.

Keywords

Particle Volume Fraction Interfacial Thermal Resistance Bimodal Size Distribution Effective Medium Approximation Powder Injection Molding 

Notes

Acknowledgements

This study is financially supported by National 863 Plan Project of China (No. 2008AA03Z505). The authors would like to thank Prof. H. Guo, from Beijing Research Institute of Nonferrous Metals, for the supply of SiC powders and performing the pressureless infiltrations.

References

  1. 1.
    Byung GM, Dong SL, Park SD (2001) Mater Chem Phys 72:42CrossRefGoogle Scholar
  2. 2.
    Robins M (2000) Electron Packag Prod 40:50Google Scholar
  3. 3.
    Huber T, Degischer HP, Lefrance G, Schmitt T (2006) Compos Sci Technol 66:2206CrossRefGoogle Scholar
  4. 4.
    Arpón R, Molina JM, Saravanan RA, García CC, Louis E, Narciso J (2003) Acta Mater 5:3145CrossRefGoogle Scholar
  5. 5.
    Molina JM, Piñero E, Narciso J, García CC, Louis E (2005) Curr Opin Solid State Mater Sci 9:202CrossRefGoogle Scholar
  6. 6.
    Molina JM, Narciso J, Weber L, Mortensen A, Louis E (2008) Mater Sci Eng A 480:483CrossRefGoogle Scholar
  7. 7.
    Ren SB, He XB, Qu XH (2007) Powder Metall 50(3):255CrossRefGoogle Scholar
  8. 8.
    Ren SB, He XB, Qu XH, Humail IS, Li Y (2007) Compos Sci Technol 67:2013CrossRefGoogle Scholar
  9. 9.
    Shen YL (1997) Mater Sci Eng A 237:102CrossRefGoogle Scholar
  10. 10.
    Molina JM, Prieto R, Narciso J, Louis E (2009) Scr Mater 60:582CrossRefGoogle Scholar
  11. 11.
    Molina JM, Saravanan RA, Arpón R, García CC, Louis E, Narciso J (2002) Acta Mater 50:247CrossRefGoogle Scholar
  12. 12.
    Zhang L, Qu XH, He XB, Duan BH, Ren SB, Qin ML (2008) Mater Sci Eng A 489:285CrossRefGoogle Scholar
  13. 13.
    Martins GP, Olson DL, Edwards GR (1998) Metall Trans B 19:95CrossRefGoogle Scholar
  14. 14.
    Carman PC (1941) Soil Sci 52:1CrossRefGoogle Scholar
  15. 15.
    Majumdar A, Reddy P (2004) Appl Phys Lett 84:4768CrossRefGoogle Scholar
  16. 16.
    Hasselman DPH, Johnson LF (1987) J Compos Mater 21:508CrossRefGoogle Scholar
  17. 17.
    Maxwell JC (1904) A treatise on electricity and magnetism. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Swartz ET, Pohl RO (1989) Rev Mod Phys 61:605CrossRefGoogle Scholar
  19. 19.
    Benveniste Y (1987) J Appl Phys 61:2840CrossRefGoogle Scholar
  20. 20.
    Chu K, Jia CC, Liang XB, Chen H, Guo H (2009) J Mater Des 30:3497CrossRefGoogle Scholar
  21. 21.
    Mummery PM, Derby B, Scruby CB (1993) Acta Metall Mater 41:1431CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ke Chu
    • 1
    Email author
  • Chengchang Jia
    • 1
  • Xuebing Liang
    • 1
  • Hui Chen
    • 1
  • Hong Guo
    • 2
  • Fazhang Yin
    • 2
  • Xuanhui Qu
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing General Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations