Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4360–4369 | Cite as

Synthesis and characterization of WO3 and WS2 hexagonal phase nanostructures and catalytic test in sulfur remotion

  • R. Huirache-AcuñaEmail author
  • F. Paraguay-Delgado
  • M. A. Albiter
  • L. Alvarez-Contreras
  • E. M. Rivera-Muñoz
  • G. Alonso-Núñez
Article

Abstract

The aim of the present study was the synthesis and characterization of WO3 and WS2 nanostructures in hexagonal phases and the evaluation of the latter as catalyst in the dibenzothiophene hydrodesulfurization reaction. 2H-WS2 nanostructures were obtained from a precursor WO3 nanostructure by a two-step hydrothermal/gas phase reaction under well-controlled conditions. All nanostructures were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and the specific surface area of the materials was measured using the BET method. The catalytic activity and selectivity measurements of the resulting unsupported WS2 nanocatalysts are also presented. Catalytic activity was found to be highest for the 2H-WS2 from the WO3 nanostructure sulfided at 773 K (rate constant of 3 × 10−7 mol/g s).

Keywords

MoS2 Tungsten Trioxide Transition Metal Dichalcogenides Molybdenum Sulfide Ammonium Metatungstate 

Notes

Acknowledgments

The authors appreciate the valuable technical assistance of C. Ornelas, W. Antúnez, and E. Torres. This work was financially supported by CONACYT 58280-Y, DGAPA-UNAM, IN102509 and postdoctoral scholarship-UNAM. Isabel Pérez Montfort corrected the English version of the manuscript.

References

  1. 1.
    Ouerfelli J, Srivastava SK, Bernède JC, Belgacem S (2009) Vacuum 83:308CrossRefGoogle Scholar
  2. 2.
    Tributsch H (1979) Sol Energy Mater 1:257CrossRefGoogle Scholar
  3. 3.
    Chinas-Castillo F, Lara-Romero J, Alonso-Nuñez G, Barceinas-Sánchez JDO, Jiménez-Sandoval S (2007) Tribol Lett 26(2):137CrossRefGoogle Scholar
  4. 4.
    Alonso G, Chianelli RR (2004) J Catal 221:657CrossRefGoogle Scholar
  5. 5.
    Knudsen KG, Cooper BH, Tøpsoe H (1999) Appl Catal A 89:205CrossRefGoogle Scholar
  6. 6.
    Park Y, Oh E-S, Rhee H-K (1997) Ind Eng Chem Res 36:5083CrossRefGoogle Scholar
  7. 7.
    Camacho Bragado GA, Elechiguerra JL, Olivas A, Fuentes S, Galván D, Yacamán José M (2005) J Catal 234:182–190CrossRefGoogle Scholar
  8. 8.
    Albiter MA, Huirache-Acuña R, Paraguay-Delgado F, Rico JL, Alonso-Núñez G (2006) Nanotechnology 17:3473CrossRefGoogle Scholar
  9. 9.
    Paraguay-Delgado F, Albiter MA, Huirache-Acuña R, Verde Y, Alonso-Núñez G (2007) J Nanosci Nanotechnol 7(11):3677CrossRefGoogle Scholar
  10. 10.
    Olivas A, Alonso G, Fuentes S (2006) Top Catal 37(3–4):175CrossRefGoogle Scholar
  11. 11.
    Zhu YQ, Hsu WK, Grobert N, Chang BH, Terrones M, Terrones H, Kroto HW, Walton DRM (2000) Chem Mater 12:1190CrossRefGoogle Scholar
  12. 12.
    Vollath D, Szabó V (1998) Mater Lett 35:236–244CrossRefGoogle Scholar
  13. 13.
    Kurumada M, Kido O, Sato T, Suzuki H, Kimura Y, Kamitsuji K, Saito Y, Kaito C (2005) J Cryst Growth 275:e1673CrossRefGoogle Scholar
  14. 14.
    Li YD, Li XL, He RR, Zhu J, Dheng ZX (2002) J Am Chem Soc 124(7):1411CrossRefGoogle Scholar
  15. 15.
    Tenne R, Margulis L, Genut M, Hodes G (1992) Nature 360:444CrossRefGoogle Scholar
  16. 16.
    Therese HA, Li J, Kolb U, Tremel W (2005) Solid State Sci 7:67CrossRefGoogle Scholar
  17. 17.
    Frey GL, Rothschild A, Sloan J, Rosentsveig R, Popovitz-Biro R, Tenne R (2001) J Solid State Chem 162:300CrossRefGoogle Scholar
  18. 18.
    Rothschild A, Popovitz-Biro R, Lourie O, Tenne R (2000) J Phys Chem B 104:8976CrossRefGoogle Scholar
  19. 19.
    Liang KS, Chianelli RR, Chien FZ, Moss SC (1986) J Non-Cryst Solids 79:251CrossRefGoogle Scholar
  20. 20.
    Strutt ER, Radetic T, Olevsky EA, Meyers MA (2008) J Mater Sci 43:5905. doi: https://doi.org/10.1007/s10853-008-2848-y CrossRefGoogle Scholar
  21. 21.
    Blanford CF, Carter CB, Stein A (2008) J Mater Sci 43:3539. doi: https://doi.org/10.1007/s10853-008-2550-0 CrossRefGoogle Scholar
  22. 22.
    Costa PMFJ, Golberg D, Shen G, Metome M, Bando Y (2008) J Mater Sci 43:1460. doi: https://doi.org/10.1007/s10853-007-2307-1 CrossRefGoogle Scholar
  23. 23.
    Cook BA, Wei XZ, Harringa JL, Kramer MJ (2008) J Mater Sci 42:7643. doi: https://doi.org/10.1007/10853-007-1898-x CrossRefGoogle Scholar
  24. 24.
    Chen CL, Nagase T, Mori H (2009) J Mater Sci 44:1965. doi: https://doi.org/10.1007/10853-009-3302-5 CrossRefGoogle Scholar
  25. 25.
    Zak A, Feldman Y, Alperovich V, Rosentsveig R, Tenne R (2000) J Am Chem Soc 122:11108CrossRefGoogle Scholar
  26. 26.
    Feldman Y, Frey GL, Homyonfer M, Lyakkhovitskaya V, Margulis L, Cohen H, Hodes G, Hutchison JL, Tenne R (1996) J Am Chem Soc 118:5362CrossRefGoogle Scholar
  27. 27.
    Ha J-H, Muralidharan P, Kim DK (2009) J Alloys Compd 475(1–2):446CrossRefGoogle Scholar
  28. 28.
    Wilson JA, Yoffe AD (1969) Adv Phys 18:193CrossRefGoogle Scholar
  29. 29.
    Kasztelan S (1990) Langmuir 6:590CrossRefGoogle Scholar
  30. 30.
    Chianelli RR (1982) Int Rev Phys Chem 2:127CrossRefGoogle Scholar
  31. 31.
    Venkateswara Rao K, Sunandana CS (2008) J Mater Sci 43:146. doi: https://doi.org/10.1007/s10853-007-2131-7 CrossRefGoogle Scholar
  32. 32.
    Albiter MA, Huirache-Acuña R, Paraguay-Delgado F, Zaera F, Alonso-Núñez G (2008) J Nanosci Nanotechnol 8(12):6437Google Scholar
  33. 33.
    Huirache-Acuña R, Flores MIZ, Albiter MA, Estrada-Guel I, Ornelas C, Paraguay-Delgado F, Rico JL, Bejar-Gómez L, Alonso-Núñez G, Martínez-Sánchez R (2006) Adv Technol Mater Mater Process 8(2):140Google Scholar
  34. 34.
    Remŝkar M, Mrzel A (2003) Vacuum 71:177CrossRefGoogle Scholar
  35. 35.
    Pérez de la Rosa M, Texier S, Berhault G, Camacho A, Yacamán MJ, Mehta A, Fuentes S, Ascencion Montoya J, Murrieta F, Chianelli RR (2004) J Catal 225:288CrossRefGoogle Scholar
  36. 36.
    Whitehurst DD, Isoda T, Mochida I (1998) Adv Catal 42:345Google Scholar
  37. 37.
    Lauritsen JV, Bollinger MV, Laegsgaard E, Jacobsen KW, Norskov JK, Clausen BS, Tøpsoe H, Besenbacher F (2004) J Catal 221:510CrossRefGoogle Scholar
  38. 38.
    Salmeron M, Somorjai GA, Wold A, Chianelli R, Liang KS (1982) Chem Phys Lett 90:105CrossRefGoogle Scholar
  39. 39.
    Bollinger MV, Lauritsen JV, Jacobsen KW, Norskov JK, Helveg S, Besenbacher F (2001) Phys Rev Lett 87:196803CrossRefGoogle Scholar
  40. 40.
    Goodenough JB (1982) In: Barry HF, Mitchell P (eds) 4th International conference on the chemistry and uses of molybdenum. Climax Molybdenum, Ann Arbor, MI, p 1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • R. Huirache-Acuña
    • 1
    Email author
  • F. Paraguay-Delgado
    • 2
    • 3
  • M. A. Albiter
    • 4
  • L. Alvarez-Contreras
    • 2
  • E. M. Rivera-Muñoz
    • 1
  • G. Alonso-Núñez
    • 5
  1. 1.Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de MéxicoQuerétaroMexico
  2. 2.Centro de Investigación en Materiales AvanzadosChihuahuaMexico
  3. 3.National Institute for NanotechnologyEdmontonCanada
  4. 4.Facultad de Ingeniería QuímicaUniversidad Michoacana de San Nicolás de Hidalgo Ciudad UniversitariaMoreliaMexico
  5. 5.Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations