Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4342–4347 | Cite as

Study of dilute Al–Cu solidification by cooling curve analysis

  • Osvaldo FornaroEmail author
  • Hugo A. Palacio
Article

Abstract

The solidification path of a dilute Al–Cu alloy was studied using controlled solidification conditions and thermal analysis. Under equilibrium considerations, below the limit of maximum solubility, a unique α phase is expected, rounded by rich non eutectic composition. However, the precipitation of the second phase θ is present even for dilute compositions, fundamentally favored by segregation in the liquid and instabilities in the front of solidification. This effect has technological and academic implications, related to the precipitation of intermetallic compounds from the melt.

Keywords

Cool Rate Solidus Temperature Eutectic Composition Eutectic Reaction Solidification Path 

Notes

Acknowledgements

This work was carried out at IFIMAT (CICPBA-MT, UNCPBA) and supported by SeCAT-UNCPBA, ANPCyT, CONICET, and CICPBA. We also appreciate the technical support given by O. Toscano at Thecnical Department of IFIMAT during the design of the equipment.

References

  1. 1.
    Mondolfo LF (1979) Aluminum alloys: structure and properties, 1st re-edn. Butterworth, London, BostonGoogle Scholar
  2. 2.
    Papazian JM (1981) Metall Trans A 12:259CrossRefGoogle Scholar
  3. 3.
    Singh SN, Bardes BP, Flemings MC (1970) Metall Trans A 1:1383CrossRefGoogle Scholar
  4. 4.
    Fuchs EG, Roósz A (1972) Metall Trans A 3:1019CrossRefGoogle Scholar
  5. 5.
    Ouellet P, Samuel FH (1999) J Mater Sci 34:4671. doi: https://doi.org/10.1023/A:1004645928886 CrossRefGoogle Scholar
  6. 6.
    Faraji M, Todd I, Jones H (2005) J Mater Sci 40:6363. doi: https://doi.org/10.1007/s10853-005-3103-4 CrossRefGoogle Scholar
  7. 7.
    Kasperovich G, Volkmann T, Ratke L, Herlach D (2008) Metall Mater Trans 39A:1183CrossRefGoogle Scholar
  8. 8.
    Fornaro O, Palacio HA, Biloni H (2006) Mater Sci Eng A 417:134. doi: https://doi.org/10.1016/jmsea.2005.11.013 CrossRefGoogle Scholar
  9. 9.
    Fredriksson H (1988) In: Metals handbook, Casting, 9th edn, vol 15. ASM Int., Materials Park, OH, USA, p 182Google Scholar
  10. 10.
    Biloni H, Boettinger WJ (1996) In: Cahn RW, Haasen P (eds) Physical metallurgy, 4th edn, vol II. Elsevier Science Publishers, Amsterdam, p 669Google Scholar
  11. 11.
    Barlow JO, Stefanesku DM (1997) AFS Trans 105:349Google Scholar
  12. 12.
    Shabestary SG, Ghodrat S (2007) Mater Sci Eng A 467:150CrossRefGoogle Scholar
  13. 13.
    Gibbs JW, Mendez PF (2008) Scr Mater 58:699CrossRefGoogle Scholar
  14. 14.
    Boettinger WJ, Kattner U (2002) Metall Mater Trans 33A:1779CrossRefGoogle Scholar
  15. 15.
    Wang Q, Li YX, Li XC (2003) Metall Mater Trans 34A:1176Google Scholar
  16. 16.
    ul haq I, Shin J-S, Lee, Z-H (2004) Met Mater Int 10:89CrossRefGoogle Scholar
  17. 17.
    Smithells CJ, Brandes EA (eds) (1976) Metals reference book, 5th edn. Butterworth, London, BostonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA)La PlataArgentina
  3. 3.Instituto de Física de Materiales Tandil (IFIMAT), Facultad de Ciencias ExactasUniversidad Nacional del Centro de la Provincia de Buenos AiresTandilArgentina

Personalised recommendations