Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5383–5392 | Cite as

Ferroelastic interactions in bilayered ferroelectric thin films

  • R. Mahjoub
  • V. Anbusathaiah
  • V. NagarajanEmail author
Ferroelectrics
  • 111 Downloads

Abstract

We present a theoretical investigation of the elastic interactions in a heteroepitaxial bilayer consisting of a (001) tetragonal PbZrxTi1−xO3 and (001) rhombohedral PbZr1−xTixO3 on a thick (001) passive substrate. Analytical expressions for the elastic interaction energies between the layers and the resultant ferroelastic twin formation have been derived as a function of the lattice misfit strain (between layers and the substrate), composition of the ferroelectric and thickness. It is found that the elastic coupling between the tetragonal and rhombohedral layers leads to the equilibrium domain fraction in the tetragonal layer several time larger than that in single-layer films of similar thickness. Most critically, the model finds a significant change in the ferroelastic domain volume fraction in the presence of an applied electric field and hence enhanced piezoelectric properties compared to single-layered epitaxial PZT thin films.

Keywords

External Electric Field Free Energy Density Piezoelectric Coefficient Total Free Energy Misfit Strain 

Notes

Acknowledgements

We would like acknowledge financial support from ARC DP0666231 and UNSW Faculty Research Grant.

References

  1. 1.
    Pontes FM, Longo E, Leite ER, Varela JA (2004) Appl Phys Lett 84:5470CrossRefGoogle Scholar
  2. 2.
    Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH (2005) Nature 433:395CrossRefGoogle Scholar
  3. 3.
    Cooper VR, Johnston K, Rabe KM (2007) Phys Rev B 76:020103CrossRefGoogle Scholar
  4. 4.
    Vrejoiu I, Zhu Y, Rhun GL, Schubert MA, Hesse D, Alexe M (2007) Appl Phys Lett 90:072909CrossRefGoogle Scholar
  5. 5.
    Wang C, Fang QF, Zhu ZG, Jiang AQ, Wang SY, Cheng BL, Chen ZH (2003) Appl Phys Lett 82:2880CrossRefGoogle Scholar
  6. 6.
    Roytburd AL, Alpay SP, Nagarajan V, Ganpule CS, Aggarwal S, Williams ED, Ramesh R (2000) Phys Rev Lett 85:190CrossRefGoogle Scholar
  7. 7.
    Zhou ZH, Xue JM, Li WZ, Wang J, Zhu H, Miao JM (2004) J Appl Phys 96:5706CrossRefGoogle Scholar
  8. 8.
    Dawber M, Stucki N, Lichtensteiger C, Gariglio S, Ghosez P, Triscone JM (2007) Adv Mater 19:4153CrossRefGoogle Scholar
  9. 9.
    Bungaro C, Rabe KM (2004) Phys Rev B 69:184101CrossRefGoogle Scholar
  10. 10.
    Tian W, Jiang JC, Pan XQ, Haeni JH, Li YL, Chen LQ, Schlom DG, Neaton JB, Rabe KM, Jia QX (2006) Appl Phys Lett 89:092905CrossRefGoogle Scholar
  11. 11.
    Roytburd AL, Zhong S, Alpay SP (2005) Appl Phys Lett 87:092902CrossRefGoogle Scholar
  12. 12.
    Roytburd AL (1998) J Appl Phys 83:228CrossRefGoogle Scholar
  13. 13.
    Speck JS, Seifert A, Pompe W, Ramesh R (1994) J Appl Phys 76:477CrossRefGoogle Scholar
  14. 14.
    Li JY, Liu D (2004) J Mech Phys Solids 52:1719CrossRefGoogle Scholar
  15. 15.
    Davi F, Mariano PM (2001) J Mech Phys Solids 49:1701CrossRefGoogle Scholar
  16. 16.
    Choudhury S, Li YL, Krill CE, Chen LQ (2005) Acta Mater 53:5313CrossRefGoogle Scholar
  17. 17.
    Su Y, Landis CM (2007) J Mech Phys Solids 55:280CrossRefGoogle Scholar
  18. 18.
    Burcsu E, Ravichandran G, Bhattacharya K (2004) J Mech Phys Solids 52:823CrossRefGoogle Scholar
  19. 19.
    Freund LB, Nix WD (1996) Appl Phys Lett 69:173CrossRefGoogle Scholar
  20. 20.
    Mahjoub R, Anbusathaiah V, Alpay SP, Nagarajan V (2008) J Appl Phys 104:124103CrossRefGoogle Scholar
  21. 21.
    Roytburd AL (1998) J Appl Phys 83:239CrossRefGoogle Scholar
  22. 22.
    Matthews JW, Blakeslee AE (1974) J Cryst Growth 27:118Google Scholar
  23. 23.
    Ouyang J, Roytburd AL (2006) Acta Mater 54:5565CrossRefGoogle Scholar
  24. 24.
    Suhir E (1988) J Appl Mech Trans ASME 55:143CrossRefGoogle Scholar
  25. 25.
    Speck JS, Pompe W (1994) J Appl Phys 76:466CrossRefGoogle Scholar
  26. 26.
    Roitburd AL (1976) Phys Status Solidi A 37:329CrossRefGoogle Scholar
  27. 27.
    Alpay SP, Roytburd AL (1998) J Appl Phys 83:4714CrossRefGoogle Scholar
  28. 28.
    Chen L, Nagarajan V, Ramesh R, Roytburd AL (2003) J Appl Phys 94:5147CrossRefGoogle Scholar
  29. 29.
    Haun MJ, Furman E, Jang SJ, McKinstry HA, Cross LE (1987) J Appl Phys 62:3331CrossRefGoogle Scholar
  30. 30.
    Pertsev NA, Zembil’gotov AG, Wazer R (1998) Phys Solid State 40:2002CrossRefGoogle Scholar
  31. 31.
    Nagarajan V, Jenkins IG, Alpay SP, Li H, Aggarwal S, Salamanca-Riba L, Roytburd AL, Ramesh R (1999) J Appl Phys 86:595CrossRefGoogle Scholar
  32. 32.
    Nagarajan V, Stanishevsky A, Chen L, Zhao T, Liu BT, Melngailis J, Roytburd AL, Ramesh R, Finder J, Yu Z, Droopad R, Eisenbeiser K (2002) Appl Phys Lett 81:4215CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations