Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4308–4314 | Cite as

Fracture characteristics of high impact polystyrene under impact fatigue loadings

  • Taner YilmazEmail author
  • Tulin Sahin
  • Tamer Sinmazcelik
Article

Abstract

This study analyses the impact properties of high impact polystyrene (HIPS). HIPS is one of the well-known toughened polymers. The high toughness is given by the rubbery phase. The impact fatigue behavior of HIPS was studied with a Ceast pendulum type tester (Resil 25). The fracture mechanisms were examined with a scanning electron microscopy. The nature of crack initiation and propagation was investigated for small impact angles and three different spans. The impact angles of charpy hammer were chosen as 5°, 10°, 15°, 20°, and 25°. The fracture characteristics varied with the impact angle, the number of impacts, and the distance between supports. The rate of crack propagation was high at higher impact angles with lower endurance, and low at lower impact angles with higher endurance.

Keywords

Impact Energy Impact Angle Crack Propagation Rate Impact Fatigue Repeated Impact 

References

  1. 1.
    Ho MH, Hwang JR, Doong JL (1999) Polym Eng Sci 39:708CrossRefGoogle Scholar
  2. 2.
    Perkins WG (1999) Polym Eng Sci 39:2445CrossRefGoogle Scholar
  3. 3.
    Trantina G, Nimmer R (1994) Structural analysis of thermoplastic components. McGraw-Hill, New York, p 241Google Scholar
  4. 4.
    McCrum NG, Buckley CP, Bucknall CB (1997) Principles of polymer engineering. Oxford Science Publications, New York, p 84Google Scholar
  5. 5.
    Strong AB (2000) Plastics: material and processing. Prentice Hall, NJ, p 143Google Scholar
  6. 6.
    Argon AS (1999) J Appl Polym Sci 72:13CrossRefGoogle Scholar
  7. 7.
    Turley SG, Keskkula H (1980) Polymer 21:466CrossRefGoogle Scholar
  8. 8.
    Lee SJ, Jeoung HG, Ahn KH (2003) J Appl Polym Sci 89:3672CrossRefGoogle Scholar
  9. 9.
    Dagli G, Argon AS, Cohen RE (1995) Polymer 36:2173CrossRefGoogle Scholar
  10. 10.
    Rios-Guerrero L, Keskkula H, Paul DR (2000) Polymer 41:5415CrossRefGoogle Scholar
  11. 11.
    Jelcic Z, Holjevac-Grguric T, Rek V (2005) Polym Degrad Stab 90:295CrossRefGoogle Scholar
  12. 12.
    Rek V, Holjevac-Grguric T, Jelcic Z, Hace D (1999) Macromol Symp Polym Charact 148:425CrossRefGoogle Scholar
  13. 13.
    Suresh S (1999) Fatigue of materials; Cambridge solid state science series. Cambridge University Press, Cambridge, UK, p 192Google Scholar
  14. 14.
    Ray D, Sarkar BK, Bose NR (2002) J Appl Polym Sci 86:1995CrossRefGoogle Scholar
  15. 15.
    Şahin T, Sinmazçelik T, Arici A (2004) J Mater Sci 39:2543. doi: https://doi.org/10.1023/B:JMSC.0000020024.52958.13 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Engineering FacultyKocaeli UniversityIzmitTurkey

Personalised recommendations