Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4286–4295 | Cite as

Control of morphology in inert-gas condensation of metal oxide nanoparticles

  • Wesley O. Gordon
  • John R. Morris
  • Brian M. TissueEmail author
Article

Abstract

We report preparation conditions to obtain different morphologies of as-deposited refractory metal-oxide nanoparticles using inert-gas condensation with CO2 laser heating. The micrometer-scale morphology of the nanoparticles depends on the specific metal oxide, the buffer gas composition and pressure, and the target-to-substrate distance. These parameters control the extent to which a plume of nonagglomerated nanoparticles can reach a deposition substrate. Buffer gas pressure has the largest influence for a given material, with lower pressures producing a dense columnar morphology and higher pressures resulting in an open networked morphology. An estimate based on the geometry of the gas-phase plume and experimental results for Y2O3 nanoparticles produced in 4 Torr N2 gives a critical concentration of tens of nanoparticles per μm3 for the transition of agglomerates versus isolated nanoparticles reaching a deposition substrate.

Keywords

Y2O3 HfO2 Transition Pressure Deposition Substrate Network Morphology 

Notes

Acknowledgements

The authors gratefully acknowledge the assistance of Barbara Reisner at James Madison University for the powder XRD data, Kenneth Livi at Johns Hopkins University for the HRTEM data, and Steve McCartney for assistance with microscopy. Funding was provided by the U.S. Army Research Office under Grant W911NF-04-1-0195.

References

  1. 1.
    Fissan H, Kennedy MK, Krinke TJ, Kruis FE (2003) J Nanopart Res 5:299CrossRefGoogle Scholar
  2. 2.
    Seifert G (2004) Nat Mater 3:77CrossRefGoogle Scholar
  3. 3.
    Bowen P, Carry C (2002) Powder Technol 128:248CrossRefGoogle Scholar
  4. 4.
    Groza JR (1999) Nanostruct Mater 12:987CrossRefGoogle Scholar
  5. 5.
    Lee TG, Hyun JE (2006) Chemosphere 62:26CrossRefGoogle Scholar
  6. 6.
    Kuhlmann SA, Reimann J, Will S (2006) J Aerosol Sci 37:1696CrossRefGoogle Scholar
  7. 7.
    Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV (2007) Phys Rev E 76:061203CrossRefGoogle Scholar
  8. 8.
    Yang ZP, Ci LJ, Bur JA, Lin SY, Ajayan PM (2008) Nano Lett 8:446CrossRefGoogle Scholar
  9. 9.
    Sirbuly DJ, Law M, Pauzauskie P, Yan HQ, Maslov AV, Knutsen K, Ning CZ, Saykally RJ, Yang PD (2005) Proc Natl Acad Sci USA 102:7800CrossRefGoogle Scholar
  10. 10.
    Shen YZ, Friend CS, Jiang Y, Jakubczyk D, Swiatkiewicz J, Prasad PN (2000) J Phys Chem B 104:7577CrossRefGoogle Scholar
  11. 11.
    Bell AT (2003) Science 299:1688CrossRefGoogle Scholar
  12. 12.
    Liu Q, Cui ZM, Ma Z, Bian SW, Song WG, Wan LJ (2007) Nanotechnology 18:385605CrossRefGoogle Scholar
  13. 13.
    Lucas E, Decker S, Khaleel A, Seitz A, Fultz S, Ponce A, Li WF, Carnes C, Klabunde KJ (2001) Chemistry 7:2505CrossRefGoogle Scholar
  14. 14.
    Xagas AP, Androulaki E, Hiskia A, Falaras P (1999) Thin Solid Films 357:173CrossRefGoogle Scholar
  15. 15.
    Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) Nat Nanotechnol 3:31CrossRefGoogle Scholar
  16. 16.
    Kruis FE, Fissan H, Peled A (1998) J Aerosol Sci 29:511CrossRefGoogle Scholar
  17. 17.
    Gratzel M (2001) Nature 414:338CrossRefGoogle Scholar
  18. 18.
    Adams DM, Brus L, Chidsey CED, Creager S, Creutz C, Kagan CR, Kamat PV, Lieberman M, Lindsay S, Marcus RA, Metzger RM, Michel-Beyerle ME, Miller JR, Newton MD, Rolison DR, Sankey O, Schanze KS, Yardley J, Zhu XY (2003) J Phys Chem B 107:6668CrossRefGoogle Scholar
  19. 19.
    Ostraat ML, Blauwe JWD, Green ML, Bell LD, Atwater HA, Flagan RC (2001) J Electrochem Soc 148:G265CrossRefGoogle Scholar
  20. 20.
    Bjerneld EJ, Svendberg F, Kall M (2003) Nano Lett 3:593CrossRefGoogle Scholar
  21. 21.
    Maynard AD, Kuempel ED (2005) J Nanopart Res 7:587CrossRefGoogle Scholar
  22. 22.
    Maximova N, Dahl O (2006) Curr Opin Colloid Interf Sci 11:246CrossRefGoogle Scholar
  23. 23.
    Kang M, Kim H, Han BW, Suh J, Park J, Choi M (2004) Microelectron Eng 71:229CrossRefGoogle Scholar
  24. 24.
    Krinke TJ, Deppert K, Magnusson MH, Fissan H (2002) Part Part Syst Charact 19:321CrossRefGoogle Scholar
  25. 25.
    Shenhar R, Rotello VM (2002) Acc Chem Res 36:549CrossRefGoogle Scholar
  26. 26.
    Cimalla V, Stubenrauch M, Weise F, Fischer M, Tonisch K, Hoffmann M, Ambacher O (2007) Appl Phys Lett 90:101504CrossRefGoogle Scholar
  27. 27.
    Klabunde KJ (2001) In: Klabunde KJ (ed) Nanoscale materials in chemistry. Wiley-Interscience, New York, p 1CrossRefGoogle Scholar
  28. 28.
    Swihart MT (2003) Curr Opin Colloid Interf Sci 8:127CrossRefGoogle Scholar
  29. 29.
    Kaiser N (2002) Appl Optics 41:3053CrossRefGoogle Scholar
  30. 30.
    Hahn H (1997) Nanostruct Mater 9:3CrossRefGoogle Scholar
  31. 31.
    Kennedy MK, Kruis FE, Fissan H, Mehta BR, Stappert S, Dumpich G (2003) J Appl Phys 93:551CrossRefGoogle Scholar
  32. 32.
    Kato M (1976) Jpn J Appl Phys 15:757CrossRefGoogle Scholar
  33. 33.
    Masanori T, Sawai S, Sengoku M, Kato M, Masumoto Y (2000) J Appl Phys 87:8535CrossRefGoogle Scholar
  34. 34.
    El-Shall MS, Abdelsayed V, Pithawalla YN, Alsharach E, Deevi SC (2003) J Phys Chem B 107:2282CrossRefGoogle Scholar
  35. 35.
    Ohno T (2002) J Nanopart Res 4:255CrossRefGoogle Scholar
  36. 36.
    Bihari B, Eilers H, Tissue BM (1997) J Lumin 75:1CrossRefGoogle Scholar
  37. 37.
    Krauss W, Birringer R (1997) Nanostruct Mater 9:109CrossRefGoogle Scholar
  38. 38.
    Pithawalla YB, Deevi SC, El-Shall MS (2002) Mater Sci Eng A A329–A331:92CrossRefGoogle Scholar
  39. 39.
    Jang HD, Friedlander SK (1998) Aerosol Sci Technol 29:81CrossRefGoogle Scholar
  40. 40.
    Kim SY, Yu JH, Lee JS (1999) Nanostruct Mater 12:471CrossRefGoogle Scholar
  41. 41.
    Han J, Chang H, Lee J, Chang H (2003) Aerosol Sci Technol 37:550CrossRefGoogle Scholar
  42. 42.
    Sánchez-López JC, Justo A, Fernández A (1999) Langmuir 15:7822CrossRefGoogle Scholar
  43. 43.
    Meakin P (1983) Phys Rev A 27:2616CrossRefGoogle Scholar
  44. 44.
    Meakin P (1984) Phys Rev B Condens Matter 30:4207CrossRefGoogle Scholar
  45. 45.
    Tassopoulos M, O’Brien JA, Rosner DE (1989) AIChE J 35:967CrossRefGoogle Scholar
  46. 46.
    Krinke TJ, Deppert K, Magnusson MH, Schmidt F, Fissan H (2002) J Aerosol Sci 33:1341CrossRefGoogle Scholar
  47. 47.
    Kulkarni P, Biswas P (2004) Aerosol Sci Technol 38:541CrossRefGoogle Scholar
  48. 48.
    Kulkarni K, Biswas P (2003) J Nanopart Res 5:259CrossRefGoogle Scholar
  49. 49.
    Gordon WO, Tissue BM, Morris JR (2007) J Phys Chem C 111:3233CrossRefGoogle Scholar
  50. 50.
    Eilers H, Tissue BM (1995) Mater Lett 24:261CrossRefGoogle Scholar
  51. 51.
    Tissue BM, Yuan HB (2003) J Solid State Chem 171:12CrossRefGoogle Scholar
  52. 52.
    Levoska J, Tyunina M, Leppävuori S (1999) NanoStruct Mater 12:101CrossRefGoogle Scholar
  53. 53.
    Pereira A, Cultrera L, Dima A, Susu M, Perrone A, Du HL, Volkov AO, Cutting R, Datta PK (2006) Thin Solid Films 497:142CrossRefGoogle Scholar
  54. 54.
    Lao JY, Huang JY, Wang DZ, Ren ZF (2003) Nano Lett 3:235CrossRefGoogle Scholar
  55. 55.
    Hawkeye MM, Brett MJ (2007) J Vac Sci Technol A 25:1317CrossRefGoogle Scholar
  56. 56.
    Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics. Oxford University Press, New YorkGoogle Scholar
  57. 57.
    Lam HM, Hong MH, Yuan S, Chong TC (2004) Appl Phys A 79:2099CrossRefGoogle Scholar
  58. 58.
    Pászti Z, Pet G, Horváth ZE, Karacs A (2000) Appl Surf Sci 168:114CrossRefGoogle Scholar
  59. 59.
    Strobel R, Pratsinis SE (2007) J Mater Chem 17:4743CrossRefGoogle Scholar
  60. 60.
    Dosev D, Guo B, Kennedy IM (2006) J Aerosol Sci 37:402CrossRefGoogle Scholar
  61. 61.
    Katagiri S, Ishizawa N, Marumo F (1993) Powder Diffract 8:60CrossRefGoogle Scholar
  62. 62.
    Vogt GJ (1988) Proc Electrochem Soc 88:572Google Scholar
  63. 63.
    Kaito C (1981) J Cryst Growth 55:273CrossRefGoogle Scholar
  64. 64.
    Alayan R, Arnaud L, Broyer M, Cottancin E, Lerme J, Vialle JL, Pellarin M (2006) Phys Rev B 73:125444CrossRefGoogle Scholar
  65. 65.
    Happy, Mohanty SR, Lee P, Tan TL, Springham SV, Patran A, Ramanujan RV, Rawat RS (2006) Appl Surf Sci 252:2806CrossRefGoogle Scholar
  66. 66.
    Geohegan DB, Puretzky AS, Duscher G, Pennycook SJ (1998) Appl Phys Lett 72:2987CrossRefGoogle Scholar
  67. 67.
    Nakata Y, Muramoto J, Okada T, Maeda M (2002) J Appl Phys 91:1640CrossRefGoogle Scholar
  68. 68.
    Sánchez-López JC, Fernández A (2000) Acta Mater 48:3761CrossRefGoogle Scholar
  69. 69.
    Yatsuya S, Yanagida A, Yamauchi K, Mihama K (1984) J Cryst Growth 70:536CrossRefGoogle Scholar
  70. 70.
    Kaito C, Fujita K, Shiojiri M (1976) J Appl Phys 47:5161CrossRefGoogle Scholar
  71. 71.
    Abdelsayed V, El-Shall MS (2007) J Chem Phys 126:024706CrossRefGoogle Scholar
  72. 72.
    Furusawa H, Sakka T, Ogata YH (2004) J Appl Phys 96:975CrossRefGoogle Scholar
  73. 73.
    Novopashin SA, Muriel A (1998) JETP Lett 68:582CrossRefGoogle Scholar
  74. 74.
    Pfau P, Sattler K, Muhlbach J, Pflaum R, Recknagel E (1982) J Phys F Metal Phys 12:2131CrossRefGoogle Scholar
  75. 75.
    Novopashin S, Muriel A (2002) J Exp Theoret Phys 95:262CrossRefGoogle Scholar
  76. 76.
    Nanda KK, Kruis FE, Fissan H, Acet M (2002) J Appl Phys 91:2315CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wesley O. Gordon
    • 1
  • John R. Morris
    • 1
  • Brian M. Tissue
    • 1
    Email author
  1. 1.Department of ChemistryVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations