Nanoscale insight into the statics and dynamics of polarization behavior in thin film ferroelectric capacitors
Ferroelectrics
First Online:
- 199 Downloads
- 15 Citations
Abstract
In this study, we review recent advances in PFM studies of micrometer scale ferroelectric capacitors, summarize the experimental PFM-based approach to investigation of fast switching processes, illustrate what information can be obtained from PFM experiments on domains kinetics, and delineate the scaling effect on polarization reversal mechanism. Particular attention is given to PFM studies of mechanical stress effect on polarization stability.
Keywords
Domain Wall Domain Wall Motion Wall Velocity Piezoresponse Force Microscopy Domain Wall VelocityNotes
Acknowledgements
This study was supported by the National Science Foundation (Grant Nos. MRSEC DMR-0820521) and the Nebraska Center for Materials and Nanoscience at University of Nebraska-Lincoln. The author would like to thank Prof. T. W. Noh for his kind permission to use his data.
References
- 1.Ganpule CS, Stanishevsky A, Aggarwal S, Melngailis J, Williams E, Ramesh R, Joshi V, de Araujo CP (1999) Appl Phys Lett 75:3874CrossRefGoogle Scholar
- 2.Yun WS, Urban JJ, Gu Q, Park H (2002) Nano Lett 2:447CrossRefGoogle Scholar
- 3.Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Appl Phys Lett 83:440CrossRefGoogle Scholar
- 4.Morrison FD, Ramsay L, Scott JF (2003) J Phys Condens Matter 15:L527CrossRefGoogle Scholar
- 5.Grigoriev A, Do D-H, Kim DM, Eom C-B, Adams B, Dufresne E, Evans PG (2006) Phys Rev Lett 96:187601CrossRefGoogle Scholar
- 6.Do DH, Grigoriev A, Kim DM, Eom C-B, Evans PG, Dufresne EM (2008) Integr Ferroelectr 101:174CrossRefGoogle Scholar
- 7.Grigoriev A, Sichel R, Lee H-N, Landahl EC, Adams B, Dufresne EM, Evans PG (2008) Phys Rev Lett 100:027604CrossRefGoogle Scholar
- 8.Alexe M, Gruverman A (eds) (2004) Nanoscale characterization of ferroelectric materials: scanning probe microscopy approach. Springer-Verlag, BerlinGoogle Scholar
- 9.Jesse S, Baddorf AP, Kalinin SV (2006) Appl Phys Lett 88:062908CrossRefGoogle Scholar
- 10.Gruverman A, Rodriguez BJ, Nemanich RJ, Kingon AI, Cross JS, Tsukada M (2003) Appl Phys Lett 82:3071CrossRefGoogle Scholar
- 11.Bintachitt P, Trolier-McKinstry S, Seal K, Jesse S, Kalinin SV (2009) Appl Phys Lett 94:042906CrossRefGoogle Scholar
- 12.Hong S, Colla EL, Kim E, Taylor DV, Tagantsev AK, Muralt P, No K, Setter N (1999) J Appl Phys 86:607CrossRefGoogle Scholar
- 13.Tian L, Vasudevarao A, Morozovska AN, Eliseev EA, Kalinin SV, Gopalan V (2008) J Appl Phys 104:074110CrossRefGoogle Scholar
- 14.Kalinin SV, Rodriguez BJ, Kim S-H, Hong S-K, Gruverman A, Eliseev EA (2008) Appl Phys Lett 92:152906CrossRefGoogle Scholar
- 15.Nath R, Chu Y-H, Polomoff NA, Ramesh R, Huey BD (2008) Appl Phys Lett 93:072905CrossRefGoogle Scholar
- 16.Polomoff NA, Nath R, Bosse JL, Huey BD (2009) J Vac Sci Technol B 27:1011CrossRefGoogle Scholar
- 17.Dehoff C, Rodriguez BJ, Kingon AI, Nemanich RJ, Gruverman A, Cross JS (2005) Rev Sci Instrum 76:023708CrossRefGoogle Scholar
- 18.Gruverman A, Wu D, Scott JF (2008) Phys Rev Lett 100:097601CrossRefGoogle Scholar
- 19.Kim DJ, Jo JY, Kim TH, Yang SM, Chen B, Kim YS, Noh TW (2007) Appl Phys Lett 91:132903CrossRefGoogle Scholar
- 20.Yang SM, Jo JY, Kim DJ, Sung H, Noh TW, Lee HN, Yoon J-G, Song TK (2008) Appl Phys Lett 92:252901CrossRefGoogle Scholar
- 21.Gruverman A, Rodriguez BJ, Dehoff C, Waldrep JD, Kingon AI, Nemanich RJ, Cross JS (2005) Appl Phys Lett 87:082902CrossRefGoogle Scholar
- 22.Hase T, Shiosaki T (1991) Jpn J Appl Phys 30:2159CrossRefGoogle Scholar
- 23.Ishibashi Y, Takagi Y (1971) J Phys Soc Jap 31:506CrossRefGoogle Scholar
- 24.Lohse O et al (2001) J Appl Phys 89:2332CrossRefGoogle Scholar
- 25.Du XF, Chen IW (1998) Appl Phys Lett 72:1923CrossRefGoogle Scholar
- 26.Tagantsev A et al (2002) Phys Rev B 66:214109CrossRefGoogle Scholar
- 27.Jo JY, Han HS, Yoon J-G, Song TK, Kim S-H, Noh TW (2007) Phys Rev Lett 99:267602CrossRefGoogle Scholar
- 28.Li W, Alexe M (2007) Appl Phys Lett 91:262903CrossRefGoogle Scholar
- 29.So YW, Kim DJ, Noh TW, Yoon J-G, Song TK (2005) Appl Phys Lett 86:092905CrossRefGoogle Scholar
- 30.Jo JY, Yang SM, Kim TH, Lee HN, Yoon J-G, Park S, Jo Y, Jung MH, Noh TW (2009) Phys Rev Lett 102:045701CrossRefGoogle Scholar
- 31.Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988CrossRefGoogle Scholar
- 32.Pertsev NA, Arlt G, Zembilgotov AG (1995) Microelectron Eng 29:135CrossRefGoogle Scholar
- 33.Speck JS, Seifert A, Pompe W, Ramesh R (1994) J Appl Phys 76:477CrossRefGoogle Scholar
- 34.Pompe W, Gong X, Suo Z, Speck JS (1993) J Appl Phys 74:6012CrossRefGoogle Scholar
- 35.Gruverman A, Cross JS, Oates WS (2008) Appl Phys Lett 93:242902CrossRefGoogle Scholar
- 36.Su Y, Landis C (2007) J Mech Phys Solids 55:280CrossRefGoogle Scholar
- 37.Scott JF, Gruverman A, Wu D, Vrejoiu I, Alexe M (2008) J Phys Condens Matter 20:425222CrossRefGoogle Scholar
- 38.Kleemann W, Dec J, Prosandeev SA, Braun T, Thomas PA (2006) Ferroelectrics 334:3CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2009