Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5182–5188 | Cite as

Nanoscale insight into the statics and dynamics of polarization behavior in thin film ferroelectric capacitors

  • A. GruvermanEmail author
Ferroelectrics

Abstract

In this study, we review recent advances in PFM studies of micrometer scale ferroelectric capacitors, summarize the experimental PFM-based approach to investigation of fast switching processes, illustrate what information can be obtained from PFM experiments on domains kinetics, and delineate the scaling effect on polarization reversal mechanism. Particular attention is given to PFM studies of mechanical stress effect on polarization stability.

Keywords

Domain Wall Domain Wall Motion Wall Velocity Piezoresponse Force Microscopy Domain Wall Velocity 

Notes

Acknowledgements

This study was supported by the National Science Foundation (Grant Nos. MRSEC DMR-0820521) and the Nebraska Center for Materials and Nanoscience at University of Nebraska-Lincoln. The author would like to thank Prof. T. W. Noh for his kind permission to use his data.

References

  1. 1.
    Ganpule CS, Stanishevsky A, Aggarwal S, Melngailis J, Williams E, Ramesh R, Joshi V, de Araujo CP (1999) Appl Phys Lett 75:3874CrossRefGoogle Scholar
  2. 2.
    Yun WS, Urban JJ, Gu Q, Park H (2002) Nano Lett 2:447CrossRefGoogle Scholar
  3. 3.
    Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Appl Phys Lett 83:440CrossRefGoogle Scholar
  4. 4.
    Morrison FD, Ramsay L, Scott JF (2003) J Phys Condens Matter 15:L527CrossRefGoogle Scholar
  5. 5.
    Grigoriev A, Do D-H, Kim DM, Eom C-B, Adams B, Dufresne E, Evans PG (2006) Phys Rev Lett 96:187601CrossRefGoogle Scholar
  6. 6.
    Do DH, Grigoriev A, Kim DM, Eom C-B, Evans PG, Dufresne EM (2008) Integr Ferroelectr 101:174CrossRefGoogle Scholar
  7. 7.
    Grigoriev A, Sichel R, Lee H-N, Landahl EC, Adams B, Dufresne EM, Evans PG (2008) Phys Rev Lett 100:027604CrossRefGoogle Scholar
  8. 8.
    Alexe M, Gruverman A (eds) (2004) Nanoscale characterization of ferroelectric materials: scanning probe microscopy approach. Springer-Verlag, BerlinGoogle Scholar
  9. 9.
    Jesse S, Baddorf AP, Kalinin SV (2006) Appl Phys Lett 88:062908CrossRefGoogle Scholar
  10. 10.
    Gruverman A, Rodriguez BJ, Nemanich RJ, Kingon AI, Cross JS, Tsukada M (2003) Appl Phys Lett 82:3071CrossRefGoogle Scholar
  11. 11.
    Bintachitt P, Trolier-McKinstry S, Seal K, Jesse S, Kalinin SV (2009) Appl Phys Lett 94:042906CrossRefGoogle Scholar
  12. 12.
    Hong S, Colla EL, Kim E, Taylor DV, Tagantsev AK, Muralt P, No K, Setter N (1999) J Appl Phys 86:607CrossRefGoogle Scholar
  13. 13.
    Tian L, Vasudevarao A, Morozovska AN, Eliseev EA, Kalinin SV, Gopalan V (2008) J Appl Phys 104:074110CrossRefGoogle Scholar
  14. 14.
    Kalinin SV, Rodriguez BJ, Kim S-H, Hong S-K, Gruverman A, Eliseev EA (2008) Appl Phys Lett 92:152906CrossRefGoogle Scholar
  15. 15.
    Nath R, Chu Y-H, Polomoff NA, Ramesh R, Huey BD (2008) Appl Phys Lett 93:072905CrossRefGoogle Scholar
  16. 16.
    Polomoff NA, Nath R, Bosse JL, Huey BD (2009) J Vac Sci Technol B 27:1011CrossRefGoogle Scholar
  17. 17.
    Dehoff C, Rodriguez BJ, Kingon AI, Nemanich RJ, Gruverman A, Cross JS (2005) Rev Sci Instrum 76:023708CrossRefGoogle Scholar
  18. 18.
    Gruverman A, Wu D, Scott JF (2008) Phys Rev Lett 100:097601CrossRefGoogle Scholar
  19. 19.
    Kim DJ, Jo JY, Kim TH, Yang SM, Chen B, Kim YS, Noh TW (2007) Appl Phys Lett 91:132903CrossRefGoogle Scholar
  20. 20.
    Yang SM, Jo JY, Kim DJ, Sung H, Noh TW, Lee HN, Yoon J-G, Song TK (2008) Appl Phys Lett 92:252901CrossRefGoogle Scholar
  21. 21.
    Gruverman A, Rodriguez BJ, Dehoff C, Waldrep JD, Kingon AI, Nemanich RJ, Cross JS (2005) Appl Phys Lett 87:082902CrossRefGoogle Scholar
  22. 22.
    Hase T, Shiosaki T (1991) Jpn J Appl Phys 30:2159CrossRefGoogle Scholar
  23. 23.
    Ishibashi Y, Takagi Y (1971) J Phys Soc Jap 31:506CrossRefGoogle Scholar
  24. 24.
    Lohse O et al (2001) J Appl Phys 89:2332CrossRefGoogle Scholar
  25. 25.
    Du XF, Chen IW (1998) Appl Phys Lett 72:1923CrossRefGoogle Scholar
  26. 26.
    Tagantsev A et al (2002) Phys Rev B 66:214109CrossRefGoogle Scholar
  27. 27.
    Jo JY, Han HS, Yoon J-G, Song TK, Kim S-H, Noh TW (2007) Phys Rev Lett 99:267602CrossRefGoogle Scholar
  28. 28.
    Li W, Alexe M (2007) Appl Phys Lett 91:262903CrossRefGoogle Scholar
  29. 29.
    So YW, Kim DJ, Noh TW, Yoon J-G, Song TK (2005) Appl Phys Lett 86:092905CrossRefGoogle Scholar
  30. 30.
    Jo JY, Yang SM, Kim TH, Lee HN, Yoon J-G, Park S, Jo Y, Jung MH, Noh TW (2009) Phys Rev Lett 102:045701CrossRefGoogle Scholar
  31. 31.
    Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988CrossRefGoogle Scholar
  32. 32.
    Pertsev NA, Arlt G, Zembilgotov AG (1995) Microelectron Eng 29:135CrossRefGoogle Scholar
  33. 33.
    Speck JS, Seifert A, Pompe W, Ramesh R (1994) J Appl Phys 76:477CrossRefGoogle Scholar
  34. 34.
    Pompe W, Gong X, Suo Z, Speck JS (1993) J Appl Phys 74:6012CrossRefGoogle Scholar
  35. 35.
    Gruverman A, Cross JS, Oates WS (2008) Appl Phys Lett 93:242902CrossRefGoogle Scholar
  36. 36.
    Su Y, Landis C (2007) J Mech Phys Solids 55:280CrossRefGoogle Scholar
  37. 37.
    Scott JF, Gruverman A, Wu D, Vrejoiu I, Alexe M (2008) J Phys Condens Matter 20:425222CrossRefGoogle Scholar
  38. 38.
    Kleemann W, Dec J, Prosandeev SA, Braun T, Thomas PA (2006) Ferroelectrics 334:3CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of NebraskaLincolnUSA

Personalised recommendations