Fabrication and characterization of perovskite ferroelectric PMN/PT ceramic nanocomposites
- 223 Downloads
- 9 Citations
Abstract
The potential of a ceramic nanocomposite technique employing a simple bimodal particle size packing and a pressureless sintering process as a low-cost and simple ceramic processing to obtain perovskite ferroelectric ceramics in the PMN/PT system was demonstrated. Attention was focused on relationships between chemical composition, densification, microstructure, and electrical properties. It has been found that the phase formation, microstructures, and dielectric properties of ceramic nanocomposites are totally different from those of typical solid solutions.
Keywords
Perovskite Dielectric Property BaTiO3 Dielectric Loss Tangent Pyrochlore PhaseNotes
Acknowledgements
This work was supported by the National Nanotechnology Center (NANOTEC), NSTDA, the Thailand Research Fund (TRF), the Commission on Higher Education (CHE) and the Faculty of Science, Chiang Mai University.
References
- 1.Ngamjarurojana A, Ananta S (2009) Chiang Mai J Sci 36:59Google Scholar
- 2.Tipakontitikul R, Ananta S, Yimnirun R (2006) Curr Appl Phys 6:307CrossRefGoogle Scholar
- 3.Alexe M, Hesse D (2006) J Mater Sci 41:1. doi: https://doi.org/10.1007/s10853-005-5912-x CrossRefGoogle Scholar
- 4.Moulson AJ, Herbert JM (2003) Electroceramics, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
- 5.Uchino K (2000) Ferroelectric devices. Marcel Dekker, New YorkGoogle Scholar
- 6.Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
- 7.Swartz SL, Shrout TR, Schulze WA, Cross LE (1984) J Am Ceram Soc 67:311CrossRefGoogle Scholar
- 8.Guha JP, Hong DJ, Anderson HU (1988) J Am Ceram Soc 71:C-152Google Scholar
- 9.Wongmaneerung R, Sarakonsri T, Yimnirun R, Ananta S (2006) Mater Sci Eng B 130:246CrossRefGoogle Scholar
- 10.Wongmaneerung R, Sarakonsri T, Yimnirun R, Ananta S (2006) Mater Sci Eng B 132:292CrossRefGoogle Scholar
- 11.Koyuneu M, Pilgrim SM (1999) J Am Ceram Soc 82:3075CrossRefGoogle Scholar
- 12.Kusumoto K, Sekiya T (1998) Mat Res Bull 33:1367CrossRefGoogle Scholar
- 13.Niihara K (1991) J Ceram Soc Jpn 99:974CrossRefGoogle Scholar
- 14.Kuntz JD, Zhan GD, Mukherjee AK (2004) MRS Bull 29:22CrossRefGoogle Scholar
- 15.Hwang HJ, Nagai T, Sando M, Toriyama M, Niihara K (1999) J Eur Ceram Soc 19:993CrossRefGoogle Scholar
- 16.Hwang HJ, Niihara K (1998) J Mater Sci 33:549. doi: https://doi.org/10.1023/A:1004365006839 CrossRefGoogle Scholar
- 17.Tajima K, Hwang HJ, Sando M, Niihara K (1999) J Eur Ceram Soc 19:1179CrossRefGoogle Scholar
- 18.Wongmaneerung R, Rujiwatra A, Yimnirun R, Ananta S (2008) J Alloys Compd 475:473CrossRefGoogle Scholar
- 19.Chaisan W, Yimnirun R, Ananta S (2009) Ceram Int 35:121CrossRefGoogle Scholar
- 20.Wongmaneerung R, Yimnirun R, Ananta S (2006) Mater Lett 60:1447CrossRefGoogle Scholar
- 21.Wongmaneerung R, Yimnirun R, Ananta S (2006) Mater Lett 60:2666CrossRefGoogle Scholar
- 22.Wongmaneerung R, Yimnirun R, Ananta S (2007) Appl Phys A 86:249CrossRefGoogle Scholar
- 23.Fengbing S, Qiang L, Haisheng Z, Chunhong L, Shixi Z, Dezhong S (2004) Mater Chem Phys 83:135CrossRefGoogle Scholar
- 24.Suh DH, Lee DH, Kim NK (2002) J Eur Ceram Soc 22:219CrossRefGoogle Scholar
- 25.Wongsaenmai S, Tan X, Ananta S, Yimnirun R (2008) J Alloy Compd 454:331CrossRefGoogle Scholar
- 26.Chaisan W, Yimnirun R, Ananta S, Cann DP (2006) Mat Sci Eng B 132:300CrossRefGoogle Scholar
- 27.Ananta S, Thomas NW (1999) J Eur Ceram Soc 19:155CrossRefGoogle Scholar
- 28.Gupta SM, Kulkarni AR (1994) Mater Chem Phys 39:98CrossRefGoogle Scholar
- 29.Udomporn A, Pengpat K, Ananta S (2004) J Eur Ceram Soc 24:185CrossRefGoogle Scholar
- 30.Ananta S, Thomas NW (1999) J Eur Ceram Soc 19:629CrossRefGoogle Scholar
- 31.Ananta S, Thomas NW (1999) J Eur Ceram Soc 19:1873CrossRefGoogle Scholar
- 32.Wang HC, Schulze WA (1990) J Am Ceram Soc 73:825CrossRefGoogle Scholar
- 33.Choi SW, Jang JM, Bhalla AS (1996) Ferroelectrics 189:27CrossRefGoogle Scholar
- 34.Kelly J, Leonard M, Tantigate C, Safari A (1997) J Am Ceram Soc 80:957CrossRefGoogle Scholar
- 35.Wongmaneerung R, Yimnirun R, Ananta S (2009) Curr Appl Phys 9:268CrossRefGoogle Scholar
- 36.Alguero M, Alemany C, Jimenez B, Holc J, Kosec M, Pardo L (2004) J Eur Ceram Soc 24:937CrossRefGoogle Scholar
- 37.German RM (1996) Sintering theory and practice. Wiley, ChichesterGoogle Scholar
- 38.Zhang J, Wang L, Shi L, Jiang W, Chen L (2007) Scripta Mater 56:241CrossRefGoogle Scholar
- 39.Kong LB, Ma J, Zhu W, Tan OK (2002) Mat Res Bull 373:459CrossRefGoogle Scholar
- 40.Cross LE (1987) Ferroelectrics 76:241CrossRefGoogle Scholar
- 41.Unruan M, Wongmaneerung R, Ngamjarurojana A, Laosiritaworn Y, Ananta S, Yimnirun R (2005) J Appl Phys 104:064107CrossRefGoogle Scholar
- 42.Unruan M, Ngamjarurojana A, Laosiritaworn Y, Ananta S, Yimnirun R (2005) J Appl Phys 104:034101CrossRefGoogle Scholar
- 43.Yimnirun R, Ananta S, Laoratanakul P (2004) Mat Sci Eng B 112:79CrossRefGoogle Scholar
- 44.Yimnirun R, Ananta S, Laoratanakul P (2005) J Eur Ceram Soc 25:3235CrossRefGoogle Scholar
- 45.Koval V, Alemany C, Briancin J, Brunckove H (2003) J Electroceramics 10:19CrossRefGoogle Scholar
- 46.Ausloo M (1985) J Phys C Solid State Phys 18:L1163CrossRefGoogle Scholar
- 47.Wongsaenmai S, Laosiritaworn Y, Ananta S, Yimnirun R (2006) Mater Sci Eng B 128:83CrossRefGoogle Scholar
- 48.Prasatkhetragarn A, Ketsuwan P, Ananta S, Yimnirun R, Cann DP (2009) Mater Lett 63:1281CrossRefGoogle Scholar
- 49.Frey MH, Xu Z, Han P, Payne DA (1998) Ferroelectrics 206:337CrossRefGoogle Scholar
- 50.Oh JH, Lee JH, Cho SH (1994) Ferroelectrics 158:241CrossRefGoogle Scholar
- 51.Wongmaneerung R, Yimnirun R, Ananta S (2009) Mater Chem Phys 114:569CrossRefGoogle Scholar