Journal of Materials Science

, Volume 44, Issue 24, pp 6601–6607 | Cite as

Prussian Blue electrodeposition within an oriented mesoporous silica film: preliminary observations

  • Aurélie Goux
  • Jaafar Ghanbaja
  • Alain Walcarius
Mesostructured Materials


Prussian Blue (PB) has been electrochemically grown through thin mesoporous silica films of novel generation, exhibiting regular arrays of hexagonally packed mesopores channels (3 nm in diameter) oriented perpendicular to the underlying electrode surface. Due to confinement effects, special care has to be taken to ensure effective permeability of PB precursors through the hard silica template, which was best achieved by pulsed electrodeposition from a high ionic strength medium (2 M KCl). Energy dispersive X-ray spectroscopy associated to electron microscopy was used to evidence the presence of PB in the vertically-aligned mesopores, which was also assessed by their electrocatalytic behavior towards H2O2 reduction.


Cyclic Voltammetry Mesoporous Silica Prussian Blue Cyclic Voltammetry Curve Silica Film 



Financial supports from the French National Research Agency (project No NT05-3_41602 “mesoporelect”) and Nancy University (BQR) are greatly appreciated. We are also grateful to S. Borensztajn for FE-SEM experiments and to E. Aubert for GIXD measurements. We thank the Service Commun de Diffraction X, Institut Jean Barriol—Nancy-Université, for providing access to crystallographic facilities.


  1. 1.
    Walcarius A, Kuhn A (2008) Trends Anal Chem 27:593CrossRefGoogle Scholar
  2. 2.
    Sanchez C, Boissière C, Grosso D, Laberty C, Nicole L (2008) Chem Mater 20:682CrossRefGoogle Scholar
  3. 3.
    Wei TC, Hillhouse HW (2007) Langmuir 23:5689CrossRefGoogle Scholar
  4. 4.
    Etienne M, Quach A, Grosso D, Nicole L, Sanchez C, Walcarius A (2007) Chem Mater 19:844CrossRefGoogle Scholar
  5. 5.
    Sel O, Sallard S, Brezesinski T, Rathousky J, Dunphy DR, Collord A, Smarsly BM (2007) Adv Funct Mater 17:3241CrossRefGoogle Scholar
  6. 6.
    Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Nat Mater 6:602CrossRefGoogle Scholar
  7. 7.
    Brinker CJ, Dunphy DR (2006) Curr Opin Colloid Interface Sci 11:126CrossRefGoogle Scholar
  8. 8.
    Karyakin AA (2001) Electroanalysis 13:813CrossRefGoogle Scholar
  9. 9.
    Koncki R (2002) Crit Rev Anal Chem 32:79CrossRefGoogle Scholar
  10. 10.
    Ricci F, Palleschi G (2005) Biosens Bioelectron 21:389CrossRefGoogle Scholar
  11. 11.
    Karyakin AA, Puganova EA, Budashov IA, Kurochkin IN, Karyakina EE, Levchenko VA, Matveyenko VN, Varfolomeyev SD (2004) Anal Chem 76:474CrossRefGoogle Scholar
  12. 12.
    Karyakin AA, Puganova EA, Bolshakov IA, Karyakina EE (2007) Angew Chem Int Ed 46:7678CrossRefGoogle Scholar
  13. 13.
    Ravindran S, Singh KV, Andavan GTS, Ozkan M, Gao Y, Hu E, Ozkan CS (2006) Nanotechnology 17:714CrossRefGoogle Scholar
  14. 14.
    Qu F, Shi A, Yang M, Jiang J, Shen G, Yu R (2007) Anal Chim Acta 605:28CrossRefGoogle Scholar
  15. 15.
    Johansson A, Widenkvist E, Lu J, Boman M, Jansson U (2005) Nano Lett 5:1603CrossRefGoogle Scholar
  16. 16.
    Xian Y, Hu Y, Liu F, Xian Y, Feng L, Jin L (2007) Biosens Bioelectron 22:2827CrossRefGoogle Scholar
  17. 17.
    Hornok V, Dekany I (2007) J Colloid Interface Sci 309:176CrossRefGoogle Scholar
  18. 18.
    Qiu JD, Peng HZ, Liang RP, Xiong M (2007) Electroanalysis 19:1201CrossRefGoogle Scholar
  19. 19.
    Goux A, Etienne M, Aubert E, Lecomte C, Ghanbaja J, Walcarius A (2009) Chem Mater 21:731CrossRefGoogle Scholar
  20. 20.
    García-Jareño JJ, Navarro JJ, Roig AF, Scholl H, Vicente F (1995) Electrochim Acta 40:1113CrossRefGoogle Scholar
  21. 21.
    Guo Y, Guadalupe AR, Resto O, Fonseca LF, Weisz SZ (1999) Chem Mater 11:135CrossRefGoogle Scholar
  22. 22.
    Ho KC, Chen CY, Hsu HC, Chen LC, Shiesh SC, Lin XZ (2004) Biosens Bioelectron 20:3CrossRefGoogle Scholar
  23. 23.
    Fiorito PA, Gonçales VR, Ponzio EA, Cordoba de Torresi SI (2005) Chem Commun 366Google Scholar
  24. 24.
    Yi IJ, Kim JH, Choi YJ, Kang CJ, Kim YS (2006) Microelectron Eng 83:1594CrossRefGoogle Scholar
  25. 25.
    Shan Y, Yang G, Gong J, Zhang X, Zhu L, Qu L (2008) Electrochim Acta 53:7751CrossRefGoogle Scholar
  26. 26.
    Ellis D, Eckhoff M, Neff VD (1981) J Phys Chem 85:1225CrossRefGoogle Scholar
  27. 27.
    Itaya K, Ataka T, Uchida I, Toshima S (1982) J Am Chem Soc 104:4767CrossRefGoogle Scholar
  28. 28.
    Etienne M, Goux A, Sibottier E, Walcarius A (2009) J Nanosci Nanotechnol 9:2398CrossRefGoogle Scholar
  29. 29.
    Elliot JM, Cabuché LM, Bartlett PN (2001) Anal Chem 73:2855CrossRefGoogle Scholar
  30. 30.
    Liu SQ, Xu JJ, Chen HY (2002) Electrochem Commun 4:421CrossRefGoogle Scholar
  31. 31.
    Amatore C, Oleinick A, Klymenko O, Delacôte C, Walcarius A, Svir I (2008) Anal Chem 80:3229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aurélie Goux
    • 1
  • Jaafar Ghanbaja
    • 2
  • Alain Walcarius
    • 1
  1. 1.Laboratoire de Chimie Physique et Microbiologie pour l’EnvironnementUMR 7564—CNRS—Nancy-UniversitéVillers-lès-NancyFrance
  2. 2.Service commun de microscopies électroniques et microanalyses X—Faculté des SciencesNancy-UniversitéVandœuvre-lès-Nancy CedexFrance

Personalised recommendations