Journal of Materials Science

, Volume 44, Issue 19, pp 5318–5324 | Cite as

Effect of film thickness on ferroelectric domain structure and properties of Pb(Zr0.35Ti0.65)O3/SrRuO3/SrTiO3 heterostructures

  • Hitoshi MoriokaEmail author
  • Keisuke Saito
  • Shintaro Yokoyama
  • Takahiro Oikawa
  • Toshiyuki Kurosawa
  • Hiroshi FunakuboEmail author


Epitaxial Pb(Zr0.35Ti0.65)O3 (PZT) thin films with tetragonal symmetry and thicknesses ranging from 45 to 230 nm were grown at 540 °C on SrRuO3-coated (001)SrTiO3 substrates by pulse-injected metalorganic chemical vapor deposition. The effect of the film thickness on the ferroelectric domain structure and the dielectric and ferroelectric properties were systematically investigated. Domain structure analysis of epitaxial PZT films was accomplished with high-resolution X-ray diffraction reciprocal space mapping and high-resolution transmission electron microscopy. Fully polar-axis (c-axis)-oriented epitaxial PZT thin films with high ferroelectric polarization values [e.g., remanent polarization (Pr) ~ 90 μC/cm2] were observed for film thicknesses below 70 nm. Films thicker than 70 nm had a c/a/c/a polydomain structure and the relative volume fraction of c-domains monotonously decreased to about 72% on increasing the film thickness up to 230 nm , and finally Pr diminished to about 64 μC/cm2 for the 230-nm-thick epitaxial film. These polarization values were in good agreement with the estimated values taking into account the volume fraction of the c-axis-oriented domains while assuming a negligible contribution of 90° domain reorientation caused by an externally applied electric field.


Remanent Polarization Ferroelectric Polarization Reciprocal Space Mapping SrTiO3 Substrate Ferroelectric Domain Structure 



This research was carried out under the auspices of a Grant-in-Aid for Science Research on Priority Area (B) “Control of Material Property of Ferroelectric Thin Films and Their Application to a Next-Generation Memory Device.” One of the authors (HM) would like to thank H. Miyazawa, Seiko-Epson Ltd., for useful advice on the theoretical calculation of the remanent polarization of PZT, M. Tanaka and Y. Miyamoto for TEM observations and fruitful discussions, and Prof. J. S. Cross, Tokyo Institute of Technology, for fruitful discussions.


  1. 1.
    Waser R (2003) Nanoelectrics and information technology. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park NY, Stepenson GB, Stolitchnov I, Taganstev AK, Taylor DV, Yamada T, Streiffer S (2006) J Appl Phys 100:051606CrossRefGoogle Scholar
  3. 3.
    Auciello O, Scott JF, Ramesh R (1998) Phys Today 51:22CrossRefGoogle Scholar
  4. 4.
    Lee HN, Hesse D, Zakharov N, Gösele U (2002) Science 296:2006CrossRefGoogle Scholar
  5. 5.
    Sato K, Kondo M, Kurihara K (2007) J Appl Phys 102:054104CrossRefGoogle Scholar
  6. 6.
    Foster CM, Bai GR, Csencsits R, Vetrone J, Jammy R, Wills LA, Carr E, Amano J (1997) J Appl Phys 81:2349CrossRefGoogle Scholar
  7. 7.
    Jaffe B, Cook W, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  8. 8.
    Heartiling GH, Land CE (1971) J Am Ceram Soc 54:1CrossRefGoogle Scholar
  9. 9.
    Bruner A, Eger D, Oron MB, Blau P, Katz M, Ruschin S (2003) Opt Lett 28:194CrossRefGoogle Scholar
  10. 10.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299:1719CrossRefGoogle Scholar
  11. 11.
    Speck JS, Pompe W (1994) J Appl Phys 76:466CrossRefGoogle Scholar
  12. 12.
    Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, Melngailis J, Auciello O, Ramesh R (2003) Nat Mater 2:43CrossRefGoogle Scholar
  13. 13.
    Tsurumi T, Kumano Y, Ohashi N, Takenaka T, Fukunaga O (1997) Jpn J Appl Phys 36:5970CrossRefGoogle Scholar
  14. 14.
    Saito K, Kurosawa T, Akai T, Oikawa T, Funakubo H (2003) J Appl Phys 93:545CrossRefGoogle Scholar
  15. 15.
    Morioka H, Asano G, Oikawa T, Funakubo H, Saito K (2003) Appl Phys Lett 82:4761CrossRefGoogle Scholar
  16. 16.
    Morioka H, Yokoyama S, Oikawa T, Funakubo H, Saito K (2004) Appl Phys Lett 85:3516CrossRefGoogle Scholar
  17. 17.
    Nagashima K, Aratani M, Funakubo H (2001) J Appl Phys 89:4517CrossRefGoogle Scholar
  18. 18.
    Okuda N, Saito K, Funakubo H (2000) Jpn J Appl Phys 39:572CrossRefGoogle Scholar
  19. 19.
    Higashi N, Watanabe T, Saito K, Yamaji I, Akai T, Funakubo H (2001) J Cryst Growth 229:450CrossRefGoogle Scholar
  20. 20.
    Saito K, Kurosawa T, Akai T, Yokoyama S, Morioka H, Funakubo H (2005) In: Waser R, Böttger U, Tiedke S (eds) Polar oxides: properties, characterization, and imaging. Wiley-VCH, WeinheimGoogle Scholar
  21. 21.
    Nagarajan V, Jenkins IG, Alpay SP, Li H, Aggarwal S, Salamanca-Riba L, Roytburd AL, Ramesh R (1999) J Appl Phys 86:595CrossRefGoogle Scholar
  22. 22.
    Kim YK, Lee K, Baik S (1999) J Appl Phys 95:236CrossRefGoogle Scholar
  23. 23.
    Shirane G, Suzuki K (1952) J Phys Soc Jpn 7:333CrossRefGoogle Scholar
  24. 24.
    Usami N, Nose Y, Fujiwara K, Nakajima K (2006) Appl Phys Lett 88:221912CrossRefGoogle Scholar
  25. 25.
    Koukhar VG, Pertsev NA, Waser R (2001) Phys Rev B 64:214103CrossRefGoogle Scholar
  26. 26.
    Lee KS, Choi JH, Lee JY, Baik S (2001) J Appl Phys 90:4095CrossRefGoogle Scholar
  27. 27.
    Hsu WY, Raj R (1995) Appl Phys Lett 67:729CrossRefGoogle Scholar
  28. 28.
    Foster CM, Pompe W, Daykin AC, Speck JS (1996) J Appl Phys 79:1405CrossRefGoogle Scholar
  29. 29.
    Roytburd AL (1998) J Appl Phys 83:228CrossRefGoogle Scholar
  30. 30.
    Roytburd AL (1998) J Appl Phys 83:239CrossRefGoogle Scholar
  31. 31.
    Alpay SP, Roytburd AL (1998) J Appl Phys 83:4714CrossRefGoogle Scholar
  32. 32.
    Kim YK, Morioka H, Ueno R, Yokoyama S, Funakubo H (2005) Appl Phys Lett 86:212905CrossRefGoogle Scholar
  33. 33.
    Matthews JW, Blakeslee AE (1974) J Cryst Growth 27:118Google Scholar
  34. 34.
    Kiguchi T, Wakiya N, Shinozaki K, Mizutani N (2003) Microelectr Eng 66:708CrossRefGoogle Scholar
  35. 35.
    Amanuma K, Mori T, Hase T, Sakuma T, Ochi A, Miyasaka Y (1993) Jpn J Appl Phys 32:4150CrossRefGoogle Scholar
  36. 36.
    Tokita K, Aratani M, Ozeki T, Funakubo H (2002) Key Eng Mater 216:83CrossRefGoogle Scholar
  37. 37.
    Vrejoiu I, Rhun GL, Pintilie L, Hesse D, Alexe M, Gösele U (2006) Adv Mater 18:1657CrossRefGoogle Scholar
  38. 38.
    Lee HN, Nakhmanson SM, Chisholm MF, Christen HM, Rabe KM, Vanderbilt D (2007) Phys Rev Lett 98:217602CrossRefGoogle Scholar
  39. 39.
    Kiguchi T, Wakiya N, Shinozaki K, Mizutani N (2003) Mater Res Soc Symp Proc 748:U5.1Google Scholar
  40. 40.
    Funakubo H, Aratani M, Oikawa T, Tokita K, Saito K (2002) J Appl Phys 92:6768CrossRefGoogle Scholar
  41. 41.
    Choi KJ, Biegalski M, Li YL, Sharan A, Shubert J, Uecker R, Reiche P, Chen YB, Pan XQ, Gopalan V, Chen L-Qm, Schlom DG, Eom CB (2004) Science 306:1005CrossRefGoogle Scholar
  42. 42.
    Hay HF, Dunn JW (1962) Philos Mag 7:2027CrossRefGoogle Scholar
  43. 43.
    Fujisawa H, Nakashima S, Kaibara K, Shimizu M, Niu H (1999) Jpn J Appl Phys 38:5392CrossRefGoogle Scholar
  44. 44.
    Lin CH, Friddle PA, Ma CH, Daga A, Chen H (2001) J Appl Phys 90:1509CrossRefGoogle Scholar
  45. 45.
    Pertsev NA, Contreras JR, Kukhar VG, Hermanns B, Kohlstedt H, Waser R (2003) Appl Phys Lett 83:3356CrossRefGoogle Scholar
  46. 46.
    Scott JF (2006) J Phys: Condens Matter 18:361Google Scholar
  47. 47.
    Kim DJ, Maria JP, Kingon AI, Streiffer SK (2003) J Appl Phys 93:5568CrossRefGoogle Scholar
  48. 48.
    Oikawa T, Aratani M, Funakubo H, Saito K, Mizuhira M (2004) J Appl Phys 95:3111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hitoshi Morioka
    • 1
    • 3
    Email author
  • Keisuke Saito
    • 1
  • Shintaro Yokoyama
    • 3
  • Takahiro Oikawa
    • 3
  • Toshiyuki Kurosawa
    • 2
  • Hiroshi Funakubo
    • 3
    Email author
  1. 1.Application LaboratoryBruker AXSYokohamaJapan
  2. 2.Bruker AXSYokohamaJapan
  3. 3.Department of Innovative and Engineered Materials, Interdisciplinary Graduate School of Science and EngineeringTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations