Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4246–4251 | Cite as

Sterically hindered phthalocyanines: solution–phase interactions with carbon monoxide

  • M. AlarjahEmail author
  • L. Paniwnyk
  • I. R. Peterson
  • J. P. Lorimer
  • D. J. Walton
Article

Abstract

Equilibrium measurements for the interaction between various substituted phthalocyanine iron(II) and phthalocyanine (III) and carbon monoxide gas in DMSO are reported. The preparation of a novel octaphenyl-di-tert-butylphthalocyanine iron(II) is described. Variation of the phthalocyanine ring substituents, and the oxidation state of the iron metal, altered the sensitivity of the phthalocyanine towards the carbon monoxide by changing the properties of the ring, especially the tendency towards aggregation and the availability of electron density for binding purposes. Gradual spectroscopic changes were observed for the formation of the complex between carbon monoxide and the phthalocyanine derivatives. The equilibrium constant for octa-phenyl-di-tert-butylphthalocyanine iron(II) is 15170 L/mol and for phthalocyanine iron(III) is 2118 L/mol when compared to the reference phthalocyanine iron(II) value of 7447 L/mol. The results indicate that the sensitivity to carbon monoxide increases with an increase in the electron density on the phthalocyanine ring.

Keywords

Carbon Monoxide Phthalocyanine Iron Atom FePc Central Metal Atom 

Notes

Acknowledgements

M A-A thanks Sprue-Aegis and Coventry University for funding support; for earlier study the authors thank EPSRC, British Gas, Kidde and Coventry University.

References

  1. 1.
    Hsiao YS, Whang WT, Suen SC, Shiu JY, Chen CP (2008) Nanotechnology 19:415603CrossRefGoogle Scholar
  2. 2.
    Fukuda T, Kobayashi N (2008) Transactions 35:4685Google Scholar
  3. 3.
    Liev V, Alexiev V, Bilyarska L (1999) J Mol Catal A Chem 137:15CrossRefGoogle Scholar
  4. 4.
    Kostka M, Zimcik P, Miletin M, Klemera P, Kopecky K, Musil Z (2006) J Photochem Photobiol A Chem 178:16CrossRefGoogle Scholar
  5. 5.
    Suchetti CA, Durantini EN (2006) Dyes Pigments 74:630CrossRefGoogle Scholar
  6. 6.
    Suslick KS, Rakow NA, Sen A (2004) Tetrahedron 60:11133CrossRefGoogle Scholar
  7. 7.
    Ercolani C, Monacelli F, Pennesi G, Rossi G, Antonini E, Ascenzi P, Brunori M (1981) J Chem Soc Dalton Trans 5:1120CrossRefGoogle Scholar
  8. 8.
    Sessler JL, Jayawickramarajah J, Gouloumis A, Pantos GD, Torres T, Guldi DM (2006) Tetrahedron 62:2123CrossRefGoogle Scholar
  9. 9.
    Ascenzi P, Brunori M, Pennesi G, Ercolani C, Monacelli F (1987) J Chem Soc Dalton Trans 2:369CrossRefGoogle Scholar
  10. 10.
    Pennesi G, Ercolani C, Rossi G (1985) J Chem Soc Dalton Trans 6:1113CrossRefGoogle Scholar
  11. 11.
    Petrov OA, Osipova GV, Berezin BD, Nikolaeva OI (2005) J Coord Chem 31:809CrossRefGoogle Scholar
  12. 12.
    Farrington DJ, Jones JG, Robinson ND, Twigg MV (1999) Transit Metal Chem 24:697Google Scholar
  13. 13.
    Alarjah M (2007) PhD thesis, Coventry UniversityGoogle Scholar
  14. 14.
    Doering RF, Miner RS, Rothman L, Becker EI (1957) J Org Chem 23:520CrossRefGoogle Scholar
  15. 15.
    Vilakazi SL, Nyokong T (1998) Polyhedron 17(25–26):4415CrossRefGoogle Scholar
  16. 16.
    Ozoemena K, Nyokong T (2002) J Chem Soc Dalton Trans 8:1806CrossRefGoogle Scholar
  17. 17.
    Ough EA, Stillman MJ (1994) Inorg Chem 33:573CrossRefGoogle Scholar
  18. 18.
    Decreau R, Julliard M, Giorgi M (1999) Acta Crystallogr C 55:1717CrossRefGoogle Scholar
  19. 19.
    Christendat D, David M, Morin S, Lever ABP, Kadish KM, Shao J (2005) J Porphyrins Phthalocyanines 9:626CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Alarjah
    • 1
    Email author
  • L. Paniwnyk
    • 1
  • I. R. Peterson
    • 1
  • J. P. Lorimer
    • 1
  • D. J. Walton
    • 1
  1. 1.Faculty of Health and Life ScienceCoventry UniversityCoventryUK

Personalised recommendations