Advertisement

Journal of Materials Science

, Volume 44, Issue 24, pp 6484–6489 | Cite as

Synthesis and characterization of TiO2-incorporated silica foams

  • H. N. Wang
  • P. Yuan
  • L. Zhou
  • Y. N. Guo
  • J. Zou
  • A. M. Yu
  • G. Q. Lu
  • C. Z. Yu
Mesostructured Materials

Abstract

Titania-incorporated silica (TiO2–SiO2) porous materials have great applications in diverse areas. In this work, TiO2–SiO2 porous materials with tunable Si/Ti molar ratio (R) have been successfully prepared through a one-pot method under a near-neutral condition. With decreasing Si/Ti R, a phase transition from a macroporous foam-like structure to mesostructure is observed. The resultant TiO2–SiO2 porous materials possess large surface areas and high pore volumes. In addition, the titania species are homogenously dispersed in silica matrix when Si/Ti R ≥ 10. Our contribution provides a convenient method to synthesize TiO2/SiO2 porous materials with very large pore size, high pore volume, and relatively high titania content well dispersed in the silica wall framework.

Keywords

TiO2 Acac Porous Material Silica Matrix TMOS 

Notes

Acknowledgements

This work is supported by the State Key Research Program (2004CB217800), Science & Technology Commission of Shanghai Municipality (08DZ2270500), SLADP (B113), CNSF (20721063), Shanghai Science Committee (07QH14003), NCET, the Ministry of Education of China (20060246010), and the Australian Research Council.

References

  1. 1.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  2. 2.
    Kholdeeva OA, Trukhan NN (2006) Russ Chem Rev 75:411CrossRefGoogle Scholar
  3. 3.
    Orlov A, Zhai QZ, Klinowski J (2006) J Mater Sci 41:2187. doi: https://doi.org/10.1007/s10853-006-7184-5 CrossRefGoogle Scholar
  4. 4.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  5. 5.
    Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Catal Today 44:327CrossRefGoogle Scholar
  6. 6.
    Corma A, Navarro MT, Pariente JP (1994) J Chem Soc Chem Commun 147Google Scholar
  7. 7.
    Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159CrossRefGoogle Scholar
  8. 8.
    Yu JQ, Feng ZC, Xu L, Li MJ, Xin Q, Liu ZM, Li C (2001) Chem Mater 13:994CrossRefGoogle Scholar
  9. 9.
    Morey M, Davidson A, Stucky G (1996) Microporous Mater 6:99CrossRefGoogle Scholar
  10. 10.
    Morey MS, Davidson A, Stucky GD (1998) J Porous Mater 5:195CrossRefGoogle Scholar
  11. 11.
    Morey MS, O’Brien S, Schwarz S, Stucky GD (2000) Chem Mater 12:898CrossRefGoogle Scholar
  12. 12.
    Koyano KA, Tatsumi T (1996) Chem Commun 145Google Scholar
  13. 13.
    Luan ZH, Maes EM, van der Heide PAW, Zhao DY, Czernuszewicz RS, Kevan L (1999) Chem Mater 11:3680CrossRefGoogle Scholar
  14. 14.
    Zhang WH, Lu JQ, Han B, Li MJ, Xiu JH, Ying PL, Li C (2002) Chem Mater 14:3413CrossRefGoogle Scholar
  15. 15.
    Ji D, Zhao R, Lv GM, Qian G, Yan L, Suo JS (2005) Appl Catal A Gen 281:39CrossRefGoogle Scholar
  16. 16.
    Johnson BJS, Stein A (2001) Inorg Chem 40:801CrossRefGoogle Scholar
  17. 17.
    Liang H, Zhang Y, Liu Y (2008) J Nat Gas Chem 17:403CrossRefGoogle Scholar
  18. 18.
    Brinker CJ, Scherer GW (1990) The physics and chemistry of sol-gel processing sol-gel science. Academic Press, San Diego, CAGoogle Scholar
  19. 19.
    Wang HN, Zhou XF, Yu MH, Wang YH, Han L, Zhang J, Yuan P, Auchterlonie G, Zou J, Yu CZ (2006) J Am Chem Soc 128:15992CrossRefGoogle Scholar
  20. 20.
    Yuan P, Zhou XF, Wang HN, Liu N, Hu YF, Auchterlonie G, Drennan J, Yao XD, Lu GQ, Zou J, Yu CZ (2009) Small 5:377CrossRefGoogle Scholar
  21. 21.
    Wang HN, Wang YH, Zhou XF, Zhou L, Tang JW, Lei J, Yu CZ (2007) Adv Funct Mater 17:613CrossRefGoogle Scholar
  22. 22.
    Berube F, Kleitz F, Kaliaguine S (2008) J Phys Chem C 112:14403CrossRefGoogle Scholar
  23. 23.
    Alba MD, Luan ZH, Klinowski J (1996) J Phys Chem 100:2178CrossRefGoogle Scholar
  24. 24.
    Vayssilov GN (1997) Catal Rev Sci Eng 39:209CrossRefGoogle Scholar
  25. 25.
    Luan ZH, Kevan L (1997) J Phys Chem B 101:2020CrossRefGoogle Scholar
  26. 26.
    Kim JM, Sakamoto Y, Hwang YK, Kwon YU, Terasaki O, Park SE, Stucky GD (2002) J Phys Chem B 106:2552CrossRefGoogle Scholar
  27. 27.
    Hsu YC, Chang YH, Yang CM (2008) Adv Funct Mater 18:1799CrossRefGoogle Scholar
  28. 28.
    Liu J, Zhang L, Yang QH, Li C (2008) Microporous Mesoporous Mater 116:330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.School of Engineering and Centre for Microscopy and MicroanalysisThe University of QueenslandSt LuciaAustralia
  3. 3.ARC Centre of Excellence for Functional Nanomaterials, School of Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneAustralia

Personalised recommendations