Journal of Materials Science

, Volume 44, Issue 24, pp 6775–6785 | Cite as

High selectivity for metal ion adsorption: from mesoporous phosphonated titanias to meso-/macroporous titanium phosphonates

  • Tian-Yi Ma
  • Xue-Jun Zhang
  • Zhong-Yong Yuan
Mesostructured Materials


A family of hybrid surface-phosphonated titania, titania–phosphonate, and titanium phosphonate porous materials with different organic groups in the network was synthesized by utilizing a series of organophosphonic acids as the coupling molecules. The crystalline degree of the obtained hybrids decreased by increasing the original added coupling molecule amount, with the structural phase transformed from phosphonated titania to titanium phosphonate, and simultaneously the nanoarchitecture changed from mesoporous to hierarchically meso-/macroporous structure. The whole synthesis process was performed under a very wide pH range by a template-free strategy. The samples were characterized by XRD, N2 sorption, SEM, TEM, FT-IR, MAS NMR, XPS, and TG-DSC analysis. It is revealed that the integrity of organic groups remained inside the framework of the synthesized hybrids. All the synthesized adsorbents exhibited large capacity of heavy metal ion adsorption with a definite selectivity, which depended on the nature and positions of organically functional groups.


TiO2 Pure TiO2 Phosphonic Acid Magic Angle Spin Macroporous Structure 



This study was supported by the National Natural Science Foundation of China (No. 20473041 and 20673060), the National Basic Research Program of China (No. 2009CB623502), the Specialized Research Fund for the Doctoral Program of Higher Education (20070055014), the Natural Science Foundation of Tianjin (08JCZDJC21500), the Program for New Century Excellent Talents in University (NCET-06-0215), and Nankai University.


  1. 1.
    Sanchez C, Soler-Illia GJdeAA, Ribot F, Lalot T, Mayer CR, Cabuil V (2001) Chem Mater 13:3061CrossRefGoogle Scholar
  2. 2.
    Clearfield A, Wang Z (2002) J Chem Soc Dalton Trans 15:2937CrossRefGoogle Scholar
  3. 3.
    Maeda K (2004) Microporous Mesoporous Mater 73:47CrossRefGoogle Scholar
  4. 4.
    Clearfield A (1996) Curr Opin Solid State Mater Sci 1:268CrossRefGoogle Scholar
  5. 5.
    Clearfield A (2002) Curr Opin Solid State Mater Sci 6:495CrossRefGoogle Scholar
  6. 6.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DJ, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127CrossRefGoogle Scholar
  7. 7.
    Kitagawa S, Kondo M (1998) Bull Chem Soc Jpn 71:1739CrossRefGoogle Scholar
  8. 8.
    Clearfield A, Wang JD, Tian Y, Stein E, Bhardwaj C (1995) J Solid State Chem 117:275CrossRefGoogle Scholar
  9. 9.
    Alberti G, Costantino U, Marmottini F, Vivani R, Zappelli P (1993) Angew Chem Int Ed Engl 32:1357CrossRefGoogle Scholar
  10. 10.
    Kazuyuki M, Yoshimichi K, Fujio M (1994) Angew Chem 106:2427CrossRefGoogle Scholar
  11. 11.
    Vivani R, Costantino F, Costantino U, Nocchetti M (2006) Inorg Chem 45:2388CrossRefGoogle Scholar
  12. 12.
    Ren N, Tang Y, Wang Y, Hu S, Dong A, Hua W, Yue Y, Shen J (2002) Chem Lett 1036Google Scholar
  13. 13.
    Shi X, Yang J, Yang Q (2006) Eur J Inorg Chem 1936Google Scholar
  14. 14.
    Kimura T (2003) Chem Mater 15:3742CrossRefGoogle Scholar
  15. 15.
    Kimura T (2005) Chem Mater 17:337CrossRefGoogle Scholar
  16. 16.
    Kimura T (2005) Chem Mater 17:5521CrossRefGoogle Scholar
  17. 17.
    Haskouri JEl, Guillem C, Latorre J, Beltrán A, Beltrán D, Amorós P (2004) Eur J Inorg Chem 9:1804CrossRefGoogle Scholar
  18. 18.
    Vasylyev M, Neumann R (2006) Chem Mater 18:2781CrossRefGoogle Scholar
  19. 19.
    Vasylyev M, Wachtel EJ, Popovitz-Biro R, Neumann R (2006) Chem Eur J 12:3507CrossRefGoogle Scholar
  20. 20.
    Guerrero G, Mutin PH, Vioux A (2000) Chem Mater 12:1268CrossRefGoogle Scholar
  21. 21.
    Guerrero G, Mutin PH, Vioux A (2001) J Mater Chem 11:3161CrossRefGoogle Scholar
  22. 22.
    Dai S, Burleigh MC, Shin Y, Morrow CC, Barnes CE, Xue Z (1999) Angew Chem Int Ed Engl 38:1235CrossRefGoogle Scholar
  23. 23.
    Liu AM, Hidajat K, Kawi S, Zhao DY (2000) Chem Commun 1145Google Scholar
  24. 24.
    Brown J, Mercier L, Pinnavaia J (1999) Chem Commun 69Google Scholar
  25. 25.
    Dai S, Burleigh MC, Ju YH (2000) J Am Chem Soc 122:992CrossRefGoogle Scholar
  26. 26.
    Zhang XJ, Ma TY, Yuan ZY (2008) J Mater Chem 18:2003CrossRefGoogle Scholar
  27. 27.
    Zhang XJ, Ma TY, Yuan ZY (2008) Eur J Inorg Chem 2721Google Scholar
  28. 28.
    Ma TY, Zhang XJ, Shao GS, Cao JL, Yuan ZY (2008) J Phys Chem C 112:3090CrossRefGoogle Scholar
  29. 29.
    Zhang XJ, Ma TY, Yuan ZY (2008) Chem Lett 37(7):746CrossRefGoogle Scholar
  30. 30.
    Shao GS, Zhang XJ, Yuan ZY (2008) Appl Catal B 82:208CrossRefGoogle Scholar
  31. 31.
    Kruk M, Jaroniec M, Ryoo R, Joo SH (2000) Chem Mater 12:1414CrossRefGoogle Scholar
  32. 32.
    Park M, Komarneni S (1998) Microporous Mesoporous Mater 25:75CrossRefGoogle Scholar
  33. 33.
    Kruk M, Jaroniec M (2001) Chem Mater 13:3169CrossRefGoogle Scholar
  34. 34.
    Schmidt-Winkel P, Lukens WW, Zhao DY, Chmelka BF, Yang PD, Stucky GD (1999) J Am Chem Soc 121:254CrossRefGoogle Scholar
  35. 35.
    Yuan ZY, Ren TZ, Su BL (2003) Adv Mater 15:1462CrossRefGoogle Scholar
  36. 36.
    Baunack S, Oswald S, Scharnweber D (1998) Surf Interface Anal 26:471CrossRefGoogle Scholar
  37. 37.
    Ren TZ, Yuan ZY, Azioune A, Pireaux JJ, Su BL (2006) Langmuir 22:3886CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Key Laboratory of Energy-Material Chemistry (Tianjin), Institute of New Catalytic Materials Science, Engineering Research Center of Energy Storage and Conversion (Ministry of Education), College of ChemistryNankai UnviersityTianjinPeople’s Republic of China

Personalised recommendations