Journal of Materials Science

, Volume 44, Issue 24, pp 6683–6692 | Cite as

Perfluoroalkylsulfonic acid-functionalized periodic mesostructured organosilica: a strongly acidic heterogeneous catalyst

  • David Dubé
  • Micha Rat
  • Wei Shen
  • François Béland
  • Serge KaliaguineEmail author
Mesostructured Materials


Periodic mesostructured organosilicas (PMO) were synthesized using 1,2-bis(trimethoxysilyl)ethane (BTME) under acidic conditions using Pluronic 123 as surfactant. The PMO ethane-silicas were then grafted with 1,2,2-trifluoro-2-hydroxy-1-trifluoromethylethane sulfonic acid β-sultone yielding a new perfluoroalkylsulfonic acid PMO catalyst. Ordered hexagonal mesostructures (P6mm) with surface areas up to 500 m2/g and narrow pore size distribution (around 5.1 nm) were obtained. This work thus provides an example of chemical modification for the conception of functionalized PMO acid catalysts. Liquid phase self-condensation of heptanal and acetalization of heptanal by 1-butanol were performed at 30 and 75 °C in the presence of these catalysts and results were compared with those obtained with several other heterogeneous hydrophobic acid catalysts.


Acid Site Heptanal Proton Conductivity Sulfonic Acid Group Trimethoxysilyl 



The authors thank NSERC for financial support. The authors are grateful to G. Lemay, Dr. S. Mikhailenko, Dr. B. Nohair, and B. Levasseur for assistance in the experimental work.


  1. 1.
    Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O (1999) J Am Chem Soc 121:9611. doi: CrossRefGoogle Scholar
  2. 2.
    Melde BJ, Holland BT, Blanford CF, Stein A (1999) Chem Mater 11:3302. doi: CrossRefGoogle Scholar
  3. 3.
    Asefa T, MacLachlan MJ, Coombs N, Ozin GA (1999) Nature 402:867CrossRefGoogle Scholar
  4. 4.
    Inagaki S, Guan S, Ohsua T, Terasaki O (2002) Nature 416:304CrossRefGoogle Scholar
  5. 5.
    Burleigh MC, Markowitz MA, Jayasundera S, Spector MS, Thomas CW, Gaber BP (2003) J Phys Chem B 107:12628. doi: CrossRefGoogle Scholar
  6. 6.
    Dag O, Yoshina-Ishii C, Asefa T, MacLachlan MJ, Grondey H, Coombs N, Ozin GA (2001) Adv Funct Mater 11:213CrossRefGoogle Scholar
  7. 7.
    Goto Y, Inagaki S (2002) Chem Commun 2410Google Scholar
  8. 8.
    Hamoudi S, Kaliaguine S (2002) Chem Commun 2118Google Scholar
  9. 9.
    Kapoor MP, Yang Q, Inagaki S (2002) J Am Chem Soc 124:15176. doi: CrossRefGoogle Scholar
  10. 10.
    Landskron K, Ozin GA (2005) Angew Chem Int Ed 44:2107. doi: CrossRefGoogle Scholar
  11. 11.
    Garcia-Bennett AE, Yokoi T, Sakamoto K, Kunieda H, Terasaki O, Che S, Tatsumi T (2003) Nat Mater 2:801CrossRefGoogle Scholar
  12. 12.
    Diaz I, Marquez-Alvarez C, Mohino F, Perez-Pariente J, Sastre E (2000) J Catal 193:283. doi: CrossRefGoogle Scholar
  13. 13.
    Shimizu K, Hyaashi E, Hatmachi T, Kodama T, Higuchi T, Satsuma A, Kitayama Y (2005) J Catal 231:131. doi: CrossRefGoogle Scholar
  14. 14.
    Radu DR, Lai C-Y, Huang J, Shu X, Lin VS-L (2005) Chem Commun 1264Google Scholar
  15. 15.
    Alvaro M, Corma A, Das D, Fornés V, Garcia H (2004) Chem Commun 956Google Scholar
  16. 16.
    Alvaro M, Corma A, Das D, Fornés V, Garcia H (2005) J Catal 231:48. doi: CrossRefGoogle Scholar
  17. 17.
    Athens GL, Ein-Eli Y, Chmelka BF (2007) Adv Mater 19:2580. doi: CrossRefGoogle Scholar
  18. 18.
    Macquarrie DJ, Tavener SJ, Harmer MA (2005) Chem Commun 2363Google Scholar
  19. 19.
    Sow B, Hamoudi S, Zahedi-Niaki MH, Kaliaguine S (2005) Micropor Mesopor Mater 79:129. doi: CrossRefGoogle Scholar
  20. 20.
    Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448. doi: CrossRefGoogle Scholar
  21. 21.
    Yang Q, Kapoor MP, Inagaki S (2002) J Am Chem Soc 124:9694. doi: CrossRefGoogle Scholar
  22. 22.
    Yang Q, Liu J, Yang J, Kapoor MP, Inagaki S, Li C (2004) J Catal 228:265. doi: CrossRefGoogle Scholar
  23. 23.
    Yuan X, Lee HI, Kim JW, Yie JE, Kim JM (2003) Chem Lett 32:650. doi: CrossRefGoogle Scholar
  24. 24.
    Yang Q, Kapoor MP, Inagaki S, Shirokura N, Kondo JN, Domen K (2005) J Mol Catal A 230:85. doi: CrossRefGoogle Scholar
  25. 25.
    Nakajima K, Tomita I, Hara M, Hayashi S, Domen K, Kondo JN (2005) Adv Mater 17:1839. doi: CrossRefGoogle Scholar
  26. 26.
    Nakajima K, Tomita I, Hara M, Hayashi S, Domen K, Kondo JN (2006) Catal Today 116:151. doi: CrossRefGoogle Scholar
  27. 27.
    Dubé D, Rat M, Béland F, Kaliaguine S (2008) Micropor Mesopor Mater 111:596. doi: CrossRefGoogle Scholar
  28. 28.
    Melero JA, van Grieken R, Morales G, Paniagua M (2007) Energy Fuels 21:1782. doi: CrossRefGoogle Scholar
  29. 29.
    Lim MH, Blanford CF, Stein A (1998) Chem Mater 10:467CrossRefGoogle Scholar
  30. 30.
    Rat M, Zahedi-Niaki MH, Kaliaguine S, Do T-O (2008) Micropor Mesopor Mater 112:26. doi: CrossRefGoogle Scholar
  31. 31.
    Tsuji H, Yagi F, Hattori H, Kita H (1994) J Catal 148:759CrossRefGoogle Scholar
  32. 32.
    Schimizu K, Hayashi E, Inokuchi T, Kodama T, Hagiwara H, Kitayama Y (2002) Tetrahedron Lett 43:9073CrossRefGoogle Scholar
  33. 33.
    Climent MJ, Corma A, Iborra S, Navarro MC, Primo J (1996) J Catal 161:783CrossRefGoogle Scholar
  34. 34.
    Tanaka Y, Sawamura N, Iwamoto M (1998) Tetrahedron Lett 39:9457CrossRefGoogle Scholar
  35. 35.
    Choi M, Heo W, Kleitz F, Ryoo R (2003) Chem Commun 1340Google Scholar
  36. 36.
    Mikhailenko SD, Zaidi J, Kaliaguine S (1998) J Chem Soc Faraday Trans 94:1613CrossRefGoogle Scholar
  37. 37.
    Hamoudi S, Royer S, Kaliaguine S (2004) Micropor Mesopor Mater 71:17. doi: CrossRefGoogle Scholar
  38. 38.
    Ghanbari-Siahkali A, Philippou A, Garforth A, Cundy CS, Anderson MW, Dwyer J (2001) J Chem Mater 11:569CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David Dubé
    • 1
  • Micha Rat
    • 1
  • Wei Shen
    • 1
  • François Béland
    • 2
  • Serge Kaliaguine
    • 1
    Email author
  1. 1.Department of Chemical EngineeringLaval UniversityQuebec CityCanada
  2. 2.SiliCycle Inc.Quebec CityCanada

Personalised recommendations