Heterolayered PZT thin films of different thicknesses and stacking sequence
- 103 Downloads
- 5 Citations
Abstract
The effects of stacking sequence and thickness toward the texture and electrical properties of heterolayered PbZrxTi1−xO3 (PZT) films, consisting of alternating PbZr0.7Ti0.3O3 and PbZr0.3Ti0.7O3 layers, have been studied. Thickness dependence is observed in the ferroelectric and dielectric behavior of the heterolayered PZT films whereby the remanent polarization (Pr) and relative permittivity (ε) increase with thickness, while coercive field (Ec) decreases. When baked at 500 °C and thermally annealed at 650 °C, the heterolayered PZT films regardless of their stacking sequence exhibit perovskite phase with (001)/(100) preferred orientation. Interestingly, the stacking sequence of the heterolayered PZT films dictates the morphology of the films which eventually affects the ferroelectric and dielectric performance. The heterolayered PZT film with PbZr0.7Ti0.3O3 as the first layer (heterolayered PZ70T30 film) exhibits a large grain size in the range of 1–3 μm and shows superior properties as compared to the heterolayered PZT films with PbZr0.3Ti0.7O3 as the first layer (heterolayered PZ30T70 film), which exhibits a much smaller grain size. From the sub-switching field measurement according to the Rayleigh law, there appears a lower concentration or mobility of domain walls in the small-grained heterolayered PZ30T70 films.
Keywords
Domain Wall Interfacial Layer Relative Permittivity Thickness Dependence Ferroelectric FilmNotes
Acknowledgements
This paper is based on work supported by the Science and Engineering Research Council—A*Star, Singapore under Grant No. 012 101 0130. The authors would like to thank Dr. Debbie Seng Hwee Leng for her time and efforts on SIMS measurements and Dr. X.J. Lou for his time in discussion. The authors would like to acknowledge the support of National University of Singapore in this project.
References
- 1.Scott JF (2000) Ferroelectric memories. Springer, New YorkCrossRefGoogle Scholar
- 2.Scott JF, Araujo A (1989) Science 246:1400CrossRefGoogle Scholar
- 3.Lee HN, Christen HM, Chisholm MF, Rouleau CM, Lowndes DH (2005) Nature 433:395CrossRefGoogle Scholar
- 4.Cole MW, Ngo E, Hirsch S, Okatan MB, Alpay SP (2008) Appl Phys Lett 92:072906CrossRefGoogle Scholar
- 5.Qin WF, Xiong J, Zhu J, Tang JL, Jie WJ, Zhang Y, Li YR (2008) J Mater Sci 43:409. doi: https://doi.org/10.1007/s10853-007-2177-6 CrossRefGoogle Scholar
- 6.Kanno I, Hayashi S, Takayama R, Hirao T (1996) Appl Phys Lett 68:328CrossRefGoogle Scholar
- 7.Kim L, Jung D, Kim J, Kim YS, Lee J (2003) Appl Phys Lett 82:2118CrossRefGoogle Scholar
- 8.Shimuta T, Nakagawara O, Makino T, Arai S, Tabata H, Kawai T (2002) J Appl Phys 91:2290CrossRefGoogle Scholar
- 9.Bao D, Zhang L, Yao X (2000) Appl Phys Lett 76:1063CrossRefGoogle Scholar
- 10.Boerasu I, Pintilie L, Kosec M (2000) Appl Phys Lett 77:2231CrossRefGoogle Scholar
- 11.Bao D, Lee SK, Zhu X, Alexe M, Hesse D (2005) Appl Phys Lett 86:082906CrossRefGoogle Scholar
- 12.Zhong S, Alpay SP, Cole MW, Ngo E, Hirsch S, Demaree JD (2007) Appl Phys Lett 90:092901CrossRefGoogle Scholar
- 13.Lee SJ, Moon SE, Ryu HC, Kwak MH, Kim YT, Han SK (2003) Appl Phys Lett 82:2133CrossRefGoogle Scholar
- 14.Sigman J, Clem PG, Nordquist CD (2006) Appl Phys Lett 89:132909CrossRefGoogle Scholar
- 15.Kartawidjaja FC, Zhou ZH, Wang J (2006) J Electroceram 16:425CrossRefGoogle Scholar
- 16.Lee SG, Park IG, Bae SG, Lee YH (1997) Jpn J Appl Phys 36:6880CrossRefGoogle Scholar
- 17.Wu JG, Xiao DQ, Zhu JG, Zhu JL, Tan JZ, Zhang QL (2007) Appl Phys Lett 90:082902CrossRefGoogle Scholar
- 18.Zhou ZH, Xue JM, Li WZ, Wang J, Zhu H, Miao JM (2004) J Appl Phys 96:5706CrossRefGoogle Scholar
- 19.Shi D (2003) Functional thin films and functional materials: new concept and technologies. Springer, New YorkGoogle Scholar
- 20.Bell AJ (2006) J Mater Sci 41:13. doi: https://doi.org/10.1007/s10853-005-5913-9 CrossRefGoogle Scholar
- 21.Bouregba R, Poullain GLRG, Leclerc G (2006) J Appl Phys 99:034102CrossRefGoogle Scholar
- 22.Cillessen JFM, Prins MWJ, Wolf RM (1997) J Appl Phys 81:2777CrossRefGoogle Scholar
- 23.Mihara T, Yoshimuri H, Watanabe H, Araujo CA (1995) Jpn J Appl Phys 34:5233CrossRefGoogle Scholar
- 24.Chen SY, Chen IW (1998) J Am Ceram Soc 81:97CrossRefGoogle Scholar
- 25.Reaney IM, Brooks KG, Klissurska R, Pawlaczyk C, Setter N (1994) J Am Ceram Soc 77:1209CrossRefGoogle Scholar
- 26.Kanzig W (1955) Phys Rev 98:549CrossRefGoogle Scholar
- 27.Sidorkin AS, Nesterenko LP, Bocharova IA, Sidorkin VA, Smirnov GL (2003) Ferroelectrics 286:335CrossRefGoogle Scholar
- 28.Zubko P, Jung DJ, Scott JF (2006) J Appl Phys 100:114112CrossRefGoogle Scholar
- 29.Zhou ZH, Xue JM, Li WZ, Wang J, Zhu H, Miao JM (2004) Appl Phys Lett 85:804CrossRefGoogle Scholar
- 30.Kartawidjaja FC, Sim CH, Wang J (2007) J Appl Phys 102:124102CrossRefGoogle Scholar
- 31.Ellerkmann U, Liedtke R, Waser R (2002) Ferroelectrics 271:315CrossRefGoogle Scholar
- 32.Lee JJ, Thio CL, Desu SB (1995) J Appl Phys 78:5073CrossRefGoogle Scholar
- 33.Pintilie L, Vrejoiu I, Hesse D, LeRhun G, Alexe M (2007) Phys Rev B 75:224113CrossRefGoogle Scholar
- 34.Damjanovic D (1998) Rep Prog Phys 61:1267CrossRefGoogle Scholar
- 35.Taylor DV, Damjanovic D (1998) Appl Phys Lett 73:2045CrossRefGoogle Scholar
- 36.Gharb NB, Mckinstry ST (2005) J Appl Phys 97:064106CrossRefGoogle Scholar
- 37.Hu SH, Hu GJ, Meng XJ, Wang GS, Sun JL, Guo SL, Chu JH, Dai N (2004) J Cryst Growth 260:109CrossRefGoogle Scholar
- 38.Suzuki K, Kijima K (2005) Jpn J Appl Phys 44:8528CrossRefGoogle Scholar
- 39.Wang Y, Ren X, Liu J, Zhang Z, Van F, Lu C, Zhu J, Shen H (1999) Ferroelectrics 231:1CrossRefGoogle Scholar
- 40.Yan F, Bao P, Chan LW, Choy CL, Wang Y (2002) Thin Solid Films 406:282CrossRefGoogle Scholar
- 41.Arlt G, Hennings D, With GD (1985) J Appl Phys 58:1619CrossRefGoogle Scholar