Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5393–5407 | Cite as

Factors affecting the performance of piezoelectric bending actuators for advanced applications: an overview

  • Tao Li
  • Y. H. Chen
  • J. MaEmail author
Ferroelectrics

Abstract

The behaviors of piezoelectric bending actuators both in static and dynamic conditions driven by a high electric field were investigated and are summarized in this paper. In the static condition, the polarization and the displacement were measured and analyzed. It was found that the displacement hysteresis loop is the superposition of displacement loop induced by each layer of the actuator. The shape variation of the hysteresis loop is affected by the actuator configuration, i.e., the arrangement of electric field and poling direction. When the poling direction is parallel to an even electric field, such as parallel bimorph, the domain turns to switch at the exact coercive field of the piezoelectric material. However, when the poling direction is antiparallel to the electric field, such as series bimorph, the effect of electric field redistribution will take place during the domain reorientation, which reduces the actual electric field in the electric field–poling direction antiparallel layer, therefore prohibiting further domain reorientation. As a result, the series bimorph is noted to be more resistant to domain reorientation than the parallel bimorph. In the dynamic condition, the functions and relations of vibration velocity, heat generation, stress, and frequency were examined both theoretically and experimentally. It was found that the stress effect dominates at low frequency. At low frequency the failure mode of the actuator is often the physical fracture of the material. However, at high frequency, the failure modes mainly resulted from heat generation, unstable operation, depoling, and domain reorientation of the actuators. The vibration velocity will also decrease accordingly at the high frequency range due to more losses and heat generation.

Keywords

Poling Direction Coercive Field Functional Grade Material Piezoelectric Actuator High Electric Field 

References

  1. 1.
    Uchino K (2004) In: Proceedings of the international conference on smart materials-smart/intelligent materials and nanotechnology, p 67Google Scholar
  2. 2.
    Wiederick HD, Sherrit S, Mukherjee BK (1989) In: Second workshop on military robotic applications, p 214Google Scholar
  3. 3.
    APC International Ltd. (2001) Piezoelectric ceramics: principles and applications. APC International, Ltd, Mackeyville, PAGoogle Scholar
  4. 4.
    Damjanovic D (1998) Rep Prog Phys 61:1267CrossRefGoogle Scholar
  5. 5.
    Safari A (1999) Mater Res Innovat 2:263CrossRefGoogle Scholar
  6. 6.
    Taylor CJ, Washington GN (2002) In: Smart structures and materials 2002: smart structures and integrated systems. Proceedings of SPIE 4701 2002, p 443Google Scholar
  7. 7.
    Uchino K (1997) Piezoelectric actuators and ultrasonic motors. Kluwer Academic Publisher, LondonGoogle Scholar
  8. 8.
    Niezrechi C, Brei D, Msokalik A (2001) Shock Vib Dig 33:269–280CrossRefGoogle Scholar
  9. 9.
    Haertling GH (1999) J Am Cram Soc 82:797CrossRefGoogle Scholar
  10. 10.
    Moulson AJ, Herbert JM (2003) Electroceramics. John Wiley & Sons Ltd, EnglandCrossRefGoogle Scholar
  11. 11.
    Smits JG, Dalke SI, Cooney TK (1991) Sens Actuator A 28:41CrossRefGoogle Scholar
  12. 12.
    Besell M, Johansson S (1999) J Electroceram 3:73CrossRefGoogle Scholar
  13. 13.
    Yoo JH, Hong JI, Cao WW (2000) Sens Actuator A 79:8CrossRefGoogle Scholar
  14. 14.
    Yeo CY, Shim WK, Wouterson E, Li T, Ma J (2008) Funct Mater Lett 1:225CrossRefGoogle Scholar
  15. 15.
    Chen YH, Li T, Ma J, Boey FYC (2007) Key Eng Mater 334–335:1077CrossRefGoogle Scholar
  16. 16.
    Li T, Chen YH, Ma J (2005) J Mater Sci 40:3601. doi: https://doi.org/10.1007/s10853-005-0643-6 CrossRefGoogle Scholar
  17. 17.
    Li T, Chen YH, Ma J, Boey FYC (2007) Key Eng Mater 334–335:1073CrossRefGoogle Scholar
  18. 18.
    Li T, Ma J, Chen YH (2004) Ceram Int 30:1803CrossRefGoogle Scholar
  19. 19.
    Li T, Ma J, Chen YH (2005) Ferroelectrics 315:111CrossRefGoogle Scholar
  20. 20.
    Chen YH, Ma J, Li T (2004) Ceram Int 30:1807CrossRefGoogle Scholar
  21. 21.
    Chen YH, Li T, Ma J (2003) J Mater Sci 38:2803. doi: https://doi.org/10.1023/A:1024468015242 CrossRefGoogle Scholar
  22. 22.
    Chen YH, Li T, Ma J (2006) J Mater Sci 41:8079. doi: https://doi.org/10.1007/s10853-006-0015-x CrossRefGoogle Scholar
  23. 23.
    Chen YH, Ma J, Li T (2004) Ceram Int 30:683CrossRefGoogle Scholar
  24. 24.
    Kanda T, Kobayashi Y, Higuchi T (2003) Jpn J Appl Phys 42:3014CrossRefGoogle Scholar
  25. 25.
    Umeda M, Nakamura K, Ueha S (1999) Jpn J Appl Phys 38:5581CrossRefGoogle Scholar
  26. 26.
    Tashiro S, Ikehiro M, Igarashi H (1997) Jpn J Appl Phys 36:3004CrossRefGoogle Scholar
  27. 27.
    Chen WP, Chong CP, Chan HLW, Liu PCK (2003) Mater Sci Eng B99:203CrossRefGoogle Scholar
  28. 28.
    Xu CH, Hu JH, Chan HLW (2002) Ultrasonics 39:735CrossRefGoogle Scholar
  29. 29.
    Calderon-Moreno JM, Popa M (2002) Mater Sci Eng A336:124CrossRefGoogle Scholar
  30. 30.
    Fett T, Munz D, Thun G (2000) J Mater Sci Lett 19:1921CrossRefGoogle Scholar
  31. 31.
    Uchino K, Zheng J, Yoshikawa S (1998) J Electroceram 2:33CrossRefGoogle Scholar
  32. 32.
    Takahashi S, Sasaki Y, Uchino K (1995) Jpn J Appl Phys 34:5328CrossRefGoogle Scholar
  33. 33.
    Uchino K, Hirose S (2001) IEEE T Ultrason Ferr 48:307CrossRefGoogle Scholar
  34. 34.
    Takashi S, Hirose S, Uchino K (1994) J Am Ceram Soc 77:2429CrossRefGoogle Scholar
  35. 35.
    Wang QM, Zhang QM, Cross LE (1999) J Appl Phys 86:3352CrossRefGoogle Scholar
  36. 36.
    Sasaki Y, Umeda M, Inoue T (2001) Jpn J Appl Phys 40:5743CrossRefGoogle Scholar
  37. 37.
    Li T, Chen YH, Boey FYC, Ma J (2007) Sens Actuator A 134:544CrossRefGoogle Scholar
  38. 38.
    Li T, Chen YH, Boey FYC, Ma J (2007) J Electroceram 18:231CrossRefGoogle Scholar
  39. 39.
    Li T, Chen YH, Ma J (2007) Sens Actuator A 138:404CrossRefGoogle Scholar
  40. 40.
    Eisner E, Seager JS (1965) Ultrasonics 88-98CrossRefGoogle Scholar
  41. 41.
    Lin ZM (1987) Ultrasonic horn principle and design. Science press, Beijing, China (in Chinese)Google Scholar
  42. 42.
    Li T, Chen YH, Ma J (2009) Mechatronics 19:520. doi: https://doi.org/10.1016/j.mechatronics.2008.12.003 CrossRefGoogle Scholar
  43. 43.
    Silva CWD (2000) Vibration: fundamentals and practice. CRC Press, LondonGoogle Scholar
  44. 44.
    He LX, Li CE, Liu W (2000) Phys Stat Sol A 179:275CrossRefGoogle Scholar
  45. 45.
    Setter N, Colla EL (1993) Ferroelectric ceramics, tutorial reviews, theory, processing, and applications. Birkhauser verlag, Basel Boston BerlinGoogle Scholar
  46. 46.
    Takashshi S, Hirose S (1993) Jpn J Appl Phys 32:2422CrossRefGoogle Scholar
  47. 47.
    Hirose S, Aoyagi M, Tomikawa Y (1993) Jpn J Appl Phys 32:2418CrossRefGoogle Scholar
  48. 48.
    Yamamoto T, Mizuno F (1995) Jpn J Appl Phys 34:2627CrossRefGoogle Scholar
  49. 49.
    Takahashi S, Sasaki Y, Hirose S (1997) Jpn J Appl Phys 36:3010CrossRefGoogle Scholar
  50. 50.
    Umeda M, Nakamura K, Ueha S (1998) Jpn J Appl Phys 37:5322CrossRefGoogle Scholar
  51. 51.
    Takahashi S, Yamamoto M, Sasaki Y (1998) Jpn J Appl Phys 37:5292CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations