Advertisement

Journal of Materials Science

, Volume 44, Issue 24, pp 6727–6735 | Cite as

Surface properties and epoxidation catalytic activity of Ti-SBA15 prepared by direct synthesis

  • François Bérubé
  • Freddy Kleitz
  • Serge Kaliaguine
Mesostructured Materials

Abstract

The influence of hydrothermal treatment time on the physicochemical properties and the catalytic activity in cyclohexene epoxidation of titanium-substituted SBA15 silicas prepared by direct one-step synthesis was systematically studied using a combination of N2 physisorption at −196 °C, X-ray diffraction, X-ray photoelectron spectroscopy, diffuse reflectance UV–Vis, and elemental analysis. The other synthesis parameters were chosen to illustrate the different chemical environments of the titanium species formed before, during, and after the precipitation of anatase TiO2. At the beginning of hydrothermal treatment, results showed that the titanium species are homogeneously dispersed in the silica framework. When anatase TiO2 clusters precipitate, they do so mainly on the external surface of the mesoporous material. At higher hydrothermal treatment times, the material showed a decreased catalytic activity even if essentially no variation in their specific surface area was then observed. This lower activity was shown to be due to a partial coverage of active tetrahedral Ti species by extraframework higher coordination TiO2 deposit.

Keywords

TiO2 SBA15 Hydrothermal Treatment Anatase TiO2 SBA15 Material 

Notes

Acknowledgements

The authors wish to thank NSERC for financial support. The authors are grateful to Mr. G. Lemay for assistance in the experimental part. We thank Professor M. Leclerc from the Chemistry Department of Laval University for access to UV–Vis spectrometer. We also thank Dr A. Adnot for XPS measurements and valuable discussions.

References

  1. 1.
    Taramasso M, Perego G, Notari B (1983) US Patent 4 410 501Google Scholar
  2. 2.
    Lam Shamleen KK (1985) US Patent 4 623 526; (1985) US Patent 4 519 998; (1984) European Patent B1 0 148 038Google Scholar
  3. 3.
    Reddy JS, Kumar R, Ratnasamy P (1990) Appl Catal 58:L1CrossRefGoogle Scholar
  4. 4.
    Reddy JS, Kumar R (1991) J Catal 130:440CrossRefGoogle Scholar
  5. 5.
    Notari B (1996) Adv Catal 41:253Google Scholar
  6. 6.
    Gallot JE, Kaliaguine S (1998) Can J Chem Eng 76:833CrossRefGoogle Scholar
  7. 7.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefGoogle Scholar
  8. 8.
    Huo QS, Margolese DI, Ciesla U, Demuth DG, Feng PY, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schuth F, Stucky GD (1994) Chem Mater 6:1176CrossRefGoogle Scholar
  9. 9.
    Wan Y, Shi YF, Zhao D (2007) Chem Commun 897Google Scholar
  10. 10.
    Wan Y, Zhao D (2007) Chem Rev 107:2821CrossRefGoogle Scholar
  11. 11.
    Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093CrossRefGoogle Scholar
  12. 12.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  13. 13.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024CrossRefGoogle Scholar
  14. 14.
    Khodakov AY, Zholobenko VL, Bechara R, Durant D (2005) Micropor Mesopor Mater 79:29CrossRefGoogle Scholar
  15. 15.
    Linssen T, Cassiers K, Cool P, Vansant EF (2003) Adv Colloid Interface Sci 103:121CrossRefGoogle Scholar
  16. 16.
    On DT, Desplantier-Giscard D, Danumah C, Kaliaguine S (2003) Appl Catal A 253:543CrossRefGoogle Scholar
  17. 17.
    Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1CrossRefGoogle Scholar
  18. 18.
    Corma A (1997) Chem Rev 97:2373CrossRefGoogle Scholar
  19. 19.
    Moller K, Bein T (1998) Chem Mater 10:2950CrossRefGoogle Scholar
  20. 20.
    Arends IWCE, Sheldon RA (2001) Appl Catal A 212:175CrossRefGoogle Scholar
  21. 21.
    Fryxell GE (2006) Inorg Chem Commun 9:1141CrossRefGoogle Scholar
  22. 22.
    Oye G, Glomm WR, Vralstad T, Volden S, Magnusson H, Stocker M, Sjoblom J (2003) Adv Colloid Interface Sci 123:17Google Scholar
  23. 23.
    Ungureanu A, On DT, Dimitriu E, Kaliaguine S (2003) Appl Catal A 254:203CrossRefGoogle Scholar
  24. 24.
    Dubé D, Royer S, On DT, Béland F, Kaliaguine S (2005) Micropor Mesopor Mater 79:137CrossRefGoogle Scholar
  25. 25.
    Wu P, Iwamoto MJ (1998) Chem Soc Faraday Trans 94:2871CrossRefGoogle Scholar
  26. 26.
    Chiker F, Nogier JP, Launay F, Bonardet JL (2003) Appl Catal A 243:309CrossRefGoogle Scholar
  27. 27.
    Widenmeyer M, Grasser S, Köhler K, Anwander R (2001) Micropor Mesopor Mater 44–45:327CrossRefGoogle Scholar
  28. 28.
    Kim MJ, Chang SH, Choi JS, Ahn WS (2004) React Kinet Catal Lett 82:27CrossRefGoogle Scholar
  29. 29.
    Luan Z, Maes EM, van der Heide PAW, Zhao D, Czernuszewicz RS, Kevan L (1999) Chem Mater 11:3680CrossRefGoogle Scholar
  30. 30.
    Brutchey RL, Mork BV, Sirbuly DJ, Yang P, Tilley TD (2005) J Mol Catal A 238:1CrossRefGoogle Scholar
  31. 31.
    Ferreira P, Gonçalves IS, Kühn FE, Pillinger M, Rocha J, Santos AM, Thursfield A (2000) Eur J Inorg Chem 551Google Scholar
  32. 32.
    Pérez Y, Pérez Quintanilla D, Fajardo M, Sierra I, del Hierro I (2007) J Mol Catal A 271:227CrossRefGoogle Scholar
  33. 33.
    Oldroyd RD, Thomas JM, Maschmeyer T, MacFaul PA, Snelgrove DW, Ingold KU, Wayner DDM (1996) Angew Chem Int Ed 35:2787CrossRefGoogle Scholar
  34. 34.
    Blasco T, Corma A, Navarro MT, Pérez Pariente J (1995) J Catal 156:65CrossRefGoogle Scholar
  35. 35.
    Koyano KA, Tatsumi T (1997) Micropor Mater 10:259CrossRefGoogle Scholar
  36. 36.
    Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 387:159CrossRefGoogle Scholar
  37. 37.
    Koyano KA, Tatsumi T (1996) Chem Commun 145Google Scholar
  38. 38.
    Corma A, Kan Q, Rey F (1998) Chem Commun 579Google Scholar
  39. 39.
    Morey M, Davidson A, Stucky G (1996) Micropor Mater 6:99CrossRefGoogle Scholar
  40. 40.
    Morey MS, O’Brien S, Schwarz S, Stucky GD (2000) Chem Mater 12:898CrossRefGoogle Scholar
  41. 41.
    Zhang W, Fröba M, Wang J, Tanev PT, Wong J, Pinnavaia TJ (1996) J Am Chem Soc 118:9164CrossRefGoogle Scholar
  42. 42.
    Tuel A (1999) Micropor Mesopor Mater 27:151CrossRefGoogle Scholar
  43. 43.
    Bagshaw SA, Prouzet E, Pinnavaia TJ (1995) Science 269:1242CrossRefGoogle Scholar
  44. 44.
    Bagshaw SA, Di Renzo F, Fajula F (1996) Chem Commun 2209Google Scholar
  45. 45.
    Bagshaw SA, Kemmitt T, Milestone NB (1998) Micropor Mesopor Mater 22:419CrossRefGoogle Scholar
  46. 46.
    Ji D, Ren T, Yan L, Suo J (2003) Mater Lett 57:4474CrossRefGoogle Scholar
  47. 47.
    Ji D, Zhao R, Lv G, Qian G, Yan L, Suo J (2005) Appl Catal A 281:39CrossRefGoogle Scholar
  48. 48.
    Vinu A, Srinivasu P, Sawant DP, Alam S, Mori T, Ariga K, Balasubramanian VV, Anand C (2008) Micropor Mesopor Mater 110:422CrossRefGoogle Scholar
  49. 49.
    Zhang WH, Lu J, Han B, Li M, Xiu J, Ying P, Li C (2002) Chem Mater 14:3413CrossRefGoogle Scholar
  50. 50.
    Newalkar BL, Olanrewaju J, Komarneni S (2001) Chem Mater 13:552CrossRefGoogle Scholar
  51. 51.
    Wu S, Han Y, Zou YC, Song JW, Zhao L, Di Y, Liu SZ, Xiao FS (2004) Chem Mater 16:486CrossRefGoogle Scholar
  52. 52.
    Berube F, Kleitz F, Kaliaguine S (2008) J Phys Chem C 112:14403CrossRefGoogle Scholar
  53. 53.
    Vinu A, Srinivasu P, Miyahara M, Ariga K (2006) J Phys Chem B 110:801CrossRefGoogle Scholar
  54. 54.
    Chen Y, Huang Y, Xiu J, Han X, Bao X (2004) Appl Catal A 273:185CrossRefGoogle Scholar
  55. 55.
    Trukhan NN, Romannikov VN, Shmakov AN, Vanina MP, Paukshtis EA, Bukhtiyarov VI, Kriventsov VV, Danilov IY, Kholdeeva OA (2003) Micropor Mesopor Mater 59:73CrossRefGoogle Scholar
  56. 56.
    Ravikovitch PI, Neimark AV (2001) J Phys Chem B 105:6817CrossRefGoogle Scholar
  57. 57.
    Hua Z, Bu W, Lian Y, Chen H, Li L, Zhang L, Li C, Shi J (2005) J Mater Chem 15:661CrossRefGoogle Scholar
  58. 58.
    Galarneau A, Cambon H, Di Renzo F, Fajula F (2001) Langmuir 17:8328CrossRefGoogle Scholar
  59. 59.
    Ryoo R, Ko CH, Kruk M, Antochshuk V, Jaroniec M (2000) J Phys Chem B 104:11465CrossRefGoogle Scholar
  60. 60.
    Hoang VT, Huang Q, Eic M, Do TO, Kaliaguine S (2005) Langmuir 21:2051CrossRefGoogle Scholar
  61. 61.
    Gobin OC, Wan Y, Zhao D, Kleitz F, Kaliaguine S (2007) J Phys Chem C 111:3053CrossRefGoogle Scholar
  62. 62.
    Geobaldo CF, Bordiga S, Zecchina A, Giamello E, Leofanti G, Petrini G (1992) Catal Lett 16:109CrossRefGoogle Scholar
  63. 63.
    On DT, Le Noc L, Bonneviot L (1996) Chem Commun 299Google Scholar
  64. 64.
    On DT, Kapoor MP, Kaliaguine S (1996) Chem Commun 1161Google Scholar
  65. 65.
    Tozzola G, Mantegazza MA, Ranghino G, Petrini G, Bordiga S, Ricchiardi G, Lamberti C, Zulian R, Zecchina A (1998) J Catal 179:64CrossRefGoogle Scholar
  66. 66.
    Deo G, Turek AM, Wachs IE, Huybrechts DRC, Jacobs PA (1993) Zeolites 13:365CrossRefGoogle Scholar
  67. 67.
    Stakheev AY, Shpiro ES, Apijok J (1993) J Phys Chem 97:5663CrossRefGoogle Scholar
  68. 68.
    Kaliaguine S (1996) Stud Surf Sci Catal 102:191CrossRefGoogle Scholar
  69. 69.
    Notari B (1988) Stud Surf Sci Catal 37:413CrossRefGoogle Scholar
  70. 70.
    Klein S, Thorimbert S, Maier WF (1996) J Catal 163:476CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • François Bérubé
    • 1
  • Freddy Kleitz
    • 2
  • Serge Kaliaguine
    • 1
  1. 1.Chemical Engineering DepartmentLaval UniversityQuebec CityCanada
  2. 2.Chemistry DepartmentLaval UniversityQuebec CityCanada

Personalised recommendations