Advertisement

Journal of Materials Science

, Volume 44, Issue 24, pp 6786–6794 | Cite as

Cultivation of human fibroblasts and multipotent mesenchymal stromal cells on mesoporous silica and mixed metal oxide films

  • D. Böcking
  • J. Fiedler
  • R. E. Brenner
  • N. HüsingEmail author
Mesostructured Materials

Abstract

The application of mesoporous silica and silica–titania-mixed metal oxide films prepared via sol–gel processing as substrates for cell growth was investigated. A deliberate tailoring of the chemical composition of the porous substrates with different Si:Ti ratios was achieved by using a single-source precursor based on a titanium-coordinated alkoxysilane, resulting in mesoporous silica–titania films with hydrophilic surfaces. The different coatings were investigated with respect to their applicability in the cultivation of human cells such as human fibroblasts and multipotent mesenchymal stromal cells. It was found that they promoted cell adhesion and proliferation of human fibroblasts up to a period of 14 days. After 2 weeks only single apoptotic cells could be detected on silica–titania mixed oxide films in contrast to a somewhat higher amount on silica coatings. Furthermore, none of the films inhibited osteogenic differentiation of multipotent mesenchymal stromal cells.

Keywords

Mesoporous Silica Osteogenic Differentiation Silica Film Titanium Isopropoxide Multipotent Mesenchymal Stromal Cell 

References

  1. 1.
    Kresge CT, Leonowicz ME et al (1992) Nature 359:710CrossRefGoogle Scholar
  2. 2.
    Carturan G, Campostrini et al (1989) J Mol Catal 57:L13CrossRefGoogle Scholar
  3. 3.
    Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013CrossRefGoogle Scholar
  4. 4.
    Rooke JC, Léonard A et al (2008) J Mater Chem 18:2833CrossRefGoogle Scholar
  5. 5.
    Yang XY, Li ZQ et al (2006) Adv Mater 18:410CrossRefGoogle Scholar
  6. 6.
    Vallet-Regi M (2006) Chem Europ J 12:5934CrossRefGoogle Scholar
  7. 7.
    Coffer JL, Whitehead MA et al (2005) Phys Stat Sol A Appl Mater Sci 202:1451CrossRefGoogle Scholar
  8. 8.
    Yan X, Yu C et al (2004) Angew Chem Int Ed 43:5980CrossRefGoogle Scholar
  9. 9.
    Balas F, Manzano M et al (2008) Acta Biomater 4:514CrossRefGoogle Scholar
  10. 10.
    Baca HK, Carnes E et al (2006) Science 313:337CrossRefGoogle Scholar
  11. 11.
    Puleo DA, Nanci A (1999) Biomaterials 20:2311CrossRefGoogle Scholar
  12. 12.
    Vallet-Regi M (2006) Dalton Trans 44:5211CrossRefGoogle Scholar
  13. 13.
    Viitala R, Jokinen M et al (2002) Biomaterials 23:3073CrossRefGoogle Scholar
  14. 14.
    Ääritalo V, Areva S et al (2007) J Mater Sci Mater Med 18:1863CrossRefGoogle Scholar
  15. 15.
    Areva S, Ääritalo V et al (2007) J Mater Sci Mater Med 18:1633CrossRefGoogle Scholar
  16. 16.
    Brinker CJ, Lu Y et al (1999) Adv Mater 11:579CrossRefGoogle Scholar
  17. 17.
    Doshi D, Hüsing N et al (2000) Science 290:107CrossRefGoogle Scholar
  18. 18.
    Hozumi A, Kimura T (2008) Langmuir 24:11141CrossRefGoogle Scholar
  19. 19.
    Spatz JP (2004) Nanobiotechnology 53Google Scholar
  20. 20.
    Puchberger M, Rupp W et al (2004) New J Chem 28:1289CrossRefGoogle Scholar
  21. 21.
    Torma V, Peterlik H et al (2005) Chem Mater 17:3146CrossRefGoogle Scholar
  22. 22.
    Brinker CJ, Raman NK et al (1995) J Sol-Gel Sci Technol 4:117CrossRefGoogle Scholar
  23. 23.
    Fiedler J, Brill C et al (2006) Biochem Biophys Res Commun 345:1177CrossRefGoogle Scholar
  24. 24.
    Lu Y, Ganguli R et al (1997) Nature 389:364CrossRefGoogle Scholar
  25. 25.
    Garcia C, Zhang Y et al (2003) Angew Chem Int Ed 42:1526CrossRefGoogle Scholar
  26. 26.
    Matsura V, Guari Y et al (2004) J Mater Chem 14:3026CrossRefGoogle Scholar
  27. 27.
    Tura C, Coombs N et al (2005) Chem Mater 17:573CrossRefGoogle Scholar
  28. 28.
    Supplit R, Hüsing N et al (2006) J Mater Chem 16:4443CrossRefGoogle Scholar
  29. 29.
    Hüsing N, Launay B (2003) Appl Catal 254:297CrossRefGoogle Scholar
  30. 30.
    Supplit R, Hüsing N et al (2007) Europ J Inorg Chem 18:2797Google Scholar
  31. 31.
    Koehler J, Cai J et al (2007) Mater Res Soc Symp Proc 1007:S04–S12CrossRefGoogle Scholar
  32. 32.
    Andrianainarivelo M, Corriu R et al (1996) J Mater Chem 6:1665CrossRefGoogle Scholar
  33. 33.
    Kanta A, Sedev R et al (2005) Langmuir 21:2400CrossRefGoogle Scholar
  34. 34.
    Lebaron RG, Athanasiou KA (2000) Tissue Eng 6:85CrossRefGoogle Scholar
  35. 35.
    Hench LL (2000) Key Eng Mater 192–195:575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. Böcking
    • 1
  • J. Fiedler
    • 2
  • R. E. Brenner
    • 2
  • N. Hüsing
    • 1
    Email author
  1. 1.Institute of Inorganic Chemistry IUlm UniversityUlmGermany
  2. 2.Department of Orthopaedics, Division for Biochemistry of Joint and Connective Tissue DiseasesUlm UniversityUlmGermany

Personalised recommendations