Advertisement

Journal of Materials Science

, Volume 44, Issue 15, pp 3917–3927 | Cite as

Polymeric nanocomposites for electromagnetic wave absorption

  • Jia Huo
  • Li Wang
  • Haojie Yu
Review

Abstract

The need for protecting human or devices from harm and for keeping something from being detected by other instruments is spawning a world of attention in the development of novel electromagnetic (EM) wave absorption materials. An ideal EM wave absorber is necessary to have light weight, thin thickness, high EM wave absorption, broad width, tunable absorption frequency, and multi-functionality. This article introduces the EM wave absorption mechanism and reviews the development of polymer-based nanocomposites for EM wave absorption, in which polymers act as absorbing components or/and matrixes. And we also summarize the approaches to design the ideal absorber, including introduction of nanostructure, and simultaneous action of both dielectric and magnetic materials with special structure by directly mixing, core–shell or multilayer structure.

Keywords

Reflection Loss Magnetic Loss Wave Absorption Eddy Current Loss Maximum Reflection Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hu CX (2004) Stealth coating technology. Chemical Industry Press, BeijingGoogle Scholar
  2. 2.
    Liu SH, Liu JM, Dong XL (2006) Electromagnetic wave interference shielding and absorption materials. Chemical Industry Press, BeijingGoogle Scholar
  3. 3.
    Qiu JX, Wang Y, Gu MY (2007) J Mater Sci 42:166. doi: 10.1007/s10853-006-0919-5 CrossRefADSGoogle Scholar
  4. 4.
    Yoshida S, Sato M, Sugawara E, Shimada Y (1999) J Appl Phys 85:4636CrossRefADSGoogle Scholar
  5. 5.
    Yoshida S, Ando S, Shimada Y, Suzuki K, Nomura K (2003) J Appl Phys 93:6659CrossRefADSGoogle Scholar
  6. 6.
    Moučka R, Lopatin AV, Kazantseva NE, Vilčáková J, Sáha P (2007) J Mater Sci 42:9480. doi: 10.1007/s10853-007-2081-0 CrossRefADSGoogle Scholar
  7. 7.
    Liu ZF, Bai G, Huang Y, Li FF, Ma YF, Guo TY, He XB, Lin X, Gao HJ, Chen YS (2007) J Phys Chem C 111:13696CrossRefGoogle Scholar
  8. 8.
    Liu ZF, Bai G, Huang Y, Ma YF, Du F, Li FF, Guo TY, Chen YS (2007) Carbon 45:821CrossRefGoogle Scholar
  9. 9.
    He YF, Gong RZ, Cao H, Wang X, Zheng Y (2007) Smart Mater Struct 16:1501CrossRefADSGoogle Scholar
  10. 10.
    Phang SW, Daika R, Abdullah MH (2005) Thin Solid Films 477:125CrossRefADSGoogle Scholar
  11. 11.
    Chandrasekhar P, Naishadham K (1999) Synth Met 105:115CrossRefGoogle Scholar
  12. 12.
    Håkansson E, Amiet A, Nahavandi S, Kaynak A (2007) Eur Polym J 43:205CrossRefADSGoogle Scholar
  13. 13.
    Phang SW, Hino T, Abdullah MH, Kuramoto N (2007) Mater Chem Phys 104:327CrossRefGoogle Scholar
  14. 14.
    Mizobuchi H, Kawai T, Yoshino K (1995) Solid State Commun 96:925CrossRefADSGoogle Scholar
  15. 15.
    Wan MX, Fan JH (1998) J Polym Sci Part A: Polym Chem 36:2749CrossRefGoogle Scholar
  16. 16.
    Abbas SM, Dixit AK, Chatterjee R, Goel TC (2005) Mater Sci Eng B 123:167CrossRefGoogle Scholar
  17. 17.
    He YF, Gong RZ, Nie Y, He HH, Zhao ZS (2005) J Appl Phys 98:084903CrossRefADSGoogle Scholar
  18. 18.
    Dai DS, Shi FQ, Chen YQ, Chu SL (1976) Ferromagnetics. Science Press, BeijingGoogle Scholar
  19. 19.
    Ellwood WB, Legg VE (1937) J Appl Phys 8:351CrossRefADSGoogle Scholar
  20. 20.
    Liu JR, Itoh M, Machida K (2006) Appl Phys Lett 88:062503CrossRefADSGoogle Scholar
  21. 21.
    Roshen W (1991) IEEE Trans Magn 27:4407CrossRefADSGoogle Scholar
  22. 22.
    Morgan SP Jr (1949) J Appl Phys 20:352zbMATHCrossRefADSGoogle Scholar
  23. 23.
    Foster K, Littmann MF (1985) J Appl Phys 57:4203CrossRefADSGoogle Scholar
  24. 24.
    Yamada S, Otsuki E (1997) J Appl Phys 81:4791CrossRefADSGoogle Scholar
  25. 25.
    Li HR (1990) Introduction to dielectric physics. Chengdu University of Technology Press, ChengduGoogle Scholar
  26. 26.
    Gentner JO, Gerthsen P, Schmidt NA, Send RE (1978) J Appl Phys 49:4485CrossRefADSGoogle Scholar
  27. 27.
    Zhang XF, Dong XL, Huang H, Lv B, Lei JP, Choi CJ (2007) J Phys D Appl Phys 40:5383CrossRefADSGoogle Scholar
  28. 28.
    Yusoff AN, Abdullah MH, Ahmad SH, Jusoh SF, Mansor AA, Hamid SAA (2007) J Appl Phys 92:876CrossRefADSGoogle Scholar
  29. 29.
    Deng LW, Zhou KS, Jiang JJ, Feng ZQ (2008) J Cent South Univ: Sci Technol 39:59Google Scholar
  30. 30.
    Guo ZH, Park S, Hahn HT, Wei SY, Moldovan M, Karki AB, Young DP (2007) J Appl Phys 101:09M511CrossRefGoogle Scholar
  31. 31.
    Xue KH, Bao JC (2006) Nano chemistry: the chemical construction and applications of nanosystems. Chemical Industry Press, BeijingGoogle Scholar
  32. 32.
    Bregar VB (2004) IEEE Trans Magn 40:1679CrossRefADSGoogle Scholar
  33. 33.
    Njuguna J, Pielichowski K, Alcock JR (2007) Adv Eng Mater 9(10):835CrossRefGoogle Scholar
  34. 34.
    Chen XP, Zhuang J, Chi YH, Yang DM, Han GZ, Deng Y (2005) Chin J Inorg Chem 21(3):337Google Scholar
  35. 35.
    Chen X, Wang G, Duan Y, Liu S (2007) J Phys D Appl Phys 40(6):1827CrossRefADSGoogle Scholar
  36. 36.
    Liu JR, Itoh M, Machida K (2003) Appl Phys Lett 83(19):4017CrossRefADSGoogle Scholar
  37. 37.
    Liu JR, Itoh M, Machida K (2003) Chem Lett 32(4):394CrossRefGoogle Scholar
  38. 38.
    Naito Y, Suetake K (1971) IEEE Trans Microw Theory Tech 19(1):65CrossRefGoogle Scholar
  39. 39.
    Liu JR, Itoh M, Jiang J, Machida K (2004) J Magn Magn Mater 277(3):251CrossRefADSGoogle Scholar
  40. 40.
    Liu JR, Itoh M, Machida K (2005) J Alloy Compd 389(1–2):265CrossRefGoogle Scholar
  41. 41.
    Liu JR, Itoh M, Horikawa T, Itakura M, Kuwano N, Machida K (2004) J Phys D Appl Phys 37(19):2737CrossRefADSGoogle Scholar
  42. 42.
    Itoh M, Liu JR, Horikawa T, Machida K (2006) J Alloy Compd 408–412:1400CrossRefGoogle Scholar
  43. 43.
    Che RC, Peng LM, Duan XF, Chen Q, Liang XL (2004) Adv Mater 16(5):401CrossRefADSGoogle Scholar
  44. 44.
    Lee CC, Chen DH (2007) Appl Phys Lett 90:193102CrossRefADSGoogle Scholar
  45. 45.
    Duan YP, Yang Y, Ma H, Liu SH, Cui XD, Chen HF (2008) J Phys D Appl Phys 41(12):125403CrossRefADSGoogle Scholar
  46. 46.
    Lee SE, Kang JH, Kim CG (2006) Compos Struct 76(4):397CrossRefGoogle Scholar
  47. 47.
    Chattopadhyay DK, Raju KVSN (2007) Prog Polym Sci 32(3):352CrossRefGoogle Scholar
  48. 48.
    Chen YJ, Cao MS, Wang TH, Wan Q (2004) Appl Phys Lett 84(17):3367CrossRefADSGoogle Scholar
  49. 49.
    Feng XB, Liao G, Du JH, Dong LM, Jin KJ, Jian XG (2008) Polym Eng Sci 48(5):1007CrossRefGoogle Scholar
  50. 50.
    Ruan S, Xu B, Suo H, Wu F, Xiang S, Zhao M (2000) J Magn Magn Mater 212(1):175CrossRefADSGoogle Scholar
  51. 51.
    Makeiff DA, Huber T (2006) Synth Met 156(7–8):497CrossRefGoogle Scholar
  52. 52.
    Wang ZZ, Bi H, Liu J, Sun T, Wu XL (2008) J Magn Magn Mater 320(16):2132CrossRefADSGoogle Scholar
  53. 53.
    Ohlan A, Singh K, Chandra A, Dhawan SK (2008) Appl Phys Lett 93(5):053114CrossRefADSGoogle Scholar
  54. 54.
    Tellakula RA, Varadan VK, Shami TC, Mathur GN (2004) Smart Mater Struct 13(5):1040CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, Department of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations