Advertisement

Journal of Materials Science

, Volume 44, Issue 19, pp 5263–5273 | Cite as

Electrothermal properties of perovskite ferroelectric films

  • J. Zhang
  • A. A. Heitmann
  • S. P. Alpay
  • G. A. RossettiJr.Email author
Ferroelectrics

Abstract

The electrothermal properties of the perovskite oxides barium titanate (BTO), lead titanate (PTO), and strontium titanate (STO) are computed near the temperatures of their ferroelectric and/or ferroelastic phase transitions. The computations are performed using a modified 2-4-6 Ginzburg–Landau–Devonshire polynomial as functions of applied electric field and temperature for mechanically free monodomain crystals and for epitaxial thin films subject to perfect lateral clamping. For BTO and PTO, which display weak first-order ferroelectric phase transitions at their Curie points, the application of a bias field exceeding the electrical critical point reduces the dependence of the electrocaloric (EC) response on temperature and automatically reduces its magnitude. Under conditions of perfect lateral clamping, the weak first-order phase change is transformed into second-order phase change. In this instance the electrical critical point is coincident with the Curie temperature and a lower bias field is required to produce a comparable reduction in temperature sensitivity. Comparison of the electrothermal behaviors of BTO and PTO with that computed for STO near the temperature of the second-order ferroelastic phase transition provides insight concerning the EC properties of ferroelectric solid solution systems wherein the Curie temperature and the first-order character of the paraelectric to ferroelectric transition both may change subject to a change in composition. The results illustrate how electrical and mechanical boundary conditions can be adjusted, in conjunction with composition, in altering the EC properties of ferroelectric materials selected for use in a particular temperature range.

Keywords

Bias Field Free Energy Density Misfit Strain Ferroelectric Phase Transition Mechanical Boundary Condition 

Notes

Acknowledgements

The work at UConn was supported through Grants administered by the U.S. Army Research Office (W911NF-05-1-0528 and W911NF-08-C-0124) and the Office of Naval Research (N00014-09-1-0354). Two of the authors (S. P. Alpay and G. A. Rossetti) would like to thank Professor J. F. Scott for illuminating exchanges in connection with the work reported.

References

  1. 1.
    Childress JD (1962) J Appl Phys 33:1793CrossRefGoogle Scholar
  2. 2.
    Fatuzzo E, Kiess H, Nitsche R (1966) J Appl Phys 37:510CrossRefGoogle Scholar
  3. 3.
    Thacher PD (1968) J Appl Phys 39:1996CrossRefGoogle Scholar
  4. 4.
    Mischenko AS, Zhang Q, Scott JF, Whatmore RW, Mathur ND (2006) Science 311:1270CrossRefGoogle Scholar
  5. 5.
    Mischenko AS, Zhang Q, Whatmore RW, Scott JF, Mathur ND (2006) Appl Phys Lett 89:242912CrossRefGoogle Scholar
  6. 6.
    Akcay G, Alpay SP, Mantese JV, Rossetti GA Jr (2007) Appl Phys Lett 90:252909CrossRefGoogle Scholar
  7. 7.
    Akcay G, Alpay SP, Rossetti GA Jr, Scott JF (2008) J Appl Phys 103:024104CrossRefGoogle Scholar
  8. 8.
    Dunne LJ, Valant M, Manos G, Axelsson AK, Alford N (2008) Appl Phys Lett 93:122906CrossRefGoogle Scholar
  9. 9.
    Prosandeev S, Ponomareva I, Bellaiche L (2008) Phys Rev B 78:052103CrossRefGoogle Scholar
  10. 10.
    Qiu JH, Jiang Q (2008) Phys Lett A 372:7191CrossRefGoogle Scholar
  11. 11.
    Qiu JH, Jiang Q (2008) J Appl Phys 103:084105CrossRefGoogle Scholar
  12. 12.
    Qiu JH, Jiang Q (2008) J Appl Phys 103:034119CrossRefGoogle Scholar
  13. 13.
    Khodayari A, Pruvost S, Sebald G, Guyomar D, Mohammadi S (2009) IEEE Trans Ultrason Ferroelectr Freq Control 56:693CrossRefGoogle Scholar
  14. 14.
    Neese B, Lu SG, Chu BJ, Zhang QM (2009) Appl Phys Lett 94:042910CrossRefGoogle Scholar
  15. 15.
    Qiu JH, Jiang Q (2009) J Appl Phys 105:034110CrossRefGoogle Scholar
  16. 16.
    Neese B, Chu B, Lu S, Wang Y, Furman E, Zhang QM (2008) Science 321:821CrossRefGoogle Scholar
  17. 17.
    Devonshire AF (1949) Philos Mag 40:1040CrossRefGoogle Scholar
  18. 18.
    Devonshire AF (1951) Philos Mag 42:1065CrossRefGoogle Scholar
  19. 19.
    Uwe H, Sakudo T (1976) Phys Rev B 13:217CrossRefGoogle Scholar
  20. 20.
    Fuchs D, Schneider CW, Schneider R, Rietschel H (1999) J Appl Phys 85:7362CrossRefGoogle Scholar
  21. 21.
    Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, Choudhury S, Tian W, Hawley ME, Craigo B, Tagantsev AK, Pan XQ, Streiffer SK, Chen LQ, Kirchoefer SW, Levy J, Schlom DG (2004) Nature 430:758CrossRefGoogle Scholar
  22. 22.
    Alpay SP, Misirlioglu IB, Sharma A, Ban Z-G (2004) J Appl Phys 95:8118CrossRefGoogle Scholar
  23. 23.
    Pertsev NA, Zembilgotov AG, Tagantsev AK (1998) Phys Rev Lett 80:1988CrossRefGoogle Scholar
  24. 24.
    Qiu QY, Nagarajan V, Alpay SP (2008) Phys Rev B 78:064117CrossRefGoogle Scholar
  25. 25.
    Pertsev NA, Tagantsev AK, Setter N (2000) Phys Rev B 61:825CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. Zhang
    • 1
  • A. A. Heitmann
    • 1
  • S. P. Alpay
    • 1
  • G. A. RossettiJr.
    • 1
    Email author
  1. 1.Materials Science and Engineering Program and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations