Journal of Materials Science

, Volume 44, Issue 19, pp 5307–5311 | Cite as

Effect of wall thickness on the ferroelastic domain size of BaTiO3

  • G. Catalan
  • I. Lukyanchuk
  • A. Schilling
  • J. M. Gregg
  • J. F. Scott


Extremely regular self-organized patterns of 90° ferroelastic domains have been reported in free-standing single crystal thin films of ferroelectric BaTiO3. Lukyanchuk et al. [Phys Rev B 79, 144111 (2009)] have recently shown that the domain size as a function of thickness for such free standing films can be well described assuming that the domains are due to stress caused by a surface tension layer that does not undergo the paraelectric–ferroelectric transition. From the starting point of Lukyanchuk’s model, it is shown here that the “universal” relationship between domain size and domain wall thickness previously observed in ferroelectrics, ferromagnets and multiferroics is also valid for ferroelastic domains. Further analysis of experimental data also shows that the domain wall thickness can vary considerably (an order of magnitude) from sample to sample even for the same material (BaTiO3), in spite of which the domain size scaling model is still valid, provided that the correct, sample dependent, domain wall thickness is used.


Domain Wall BaTiO3 Domain Size BiFeO3 Stripe Domain 



Financial support from EPSRC and the Alliance programme of the British Council is gratefully acknowledged.


  1. 1.
    Landau L, Lifshitz E (1935) Phys Z Sowjetunion 8:153MATHGoogle Scholar
  2. 2.
    Kittel C (1946) Phys Rev 70:965CrossRefADSGoogle Scholar
  3. 3.
    Mitsui T, Furuichi J (1953) Phys Rev 90:193CrossRefADSGoogle Scholar
  4. 4.
    Roitburd AL (1976) Phys Status Solidi A 37:329CrossRefGoogle Scholar
  5. 5.
    Scott JF (2006) J Phys Condens Matter 18:R361CrossRefADSGoogle Scholar
  6. 6.
    Aird A, Salje EKH (1998) J Phys Condens Matter 10:L377CrossRefADSGoogle Scholar
  7. 7.
    Zubko P, Catalan G, Buckley A, Welche PR, Scott JF (2007) Phys Rev Lett 99:167601PubMedCrossRefADSGoogle Scholar
  8. 8.
    Seidel J, Martin LW, He Q, Zhan Q, Chu Y-H, Rother A, Hawkridge ME, Maksymovych P, Yu P, Gajek M, Balke N, Kalinin SV, Gemming S, Lichte H, Wang F, Catalan G, Scott JF, Spaldin NA, Orenstein J, Ramesh R (2009) Nat Mater 8:229PubMedCrossRefADSGoogle Scholar
  9. 9.
    Saad MM, Bowman RM, Gregg JM (2004) Appl Phys Lett 84:1159CrossRefADSGoogle Scholar
  10. 10.
    Saad MM, Baxter P, Bowman RM, Gregg JM, Morrison FD, Scott JF (2004) J Phys Condens Matter 16:L451CrossRefADSGoogle Scholar
  11. 11.
    Schilling A, Adams TB, Bowman RM, Gregg JM, Catalan G, Scott JF (2006) Phys Rev B 74:024115CrossRefADSGoogle Scholar
  12. 12.
    Schilling A, Bowman RM, Gregg JM, Catalan G, Scott JF (2006) Appl Phys Lett 89:212902CrossRefADSGoogle Scholar
  13. 13.
    Schilling A, Bowman RM, Catalan G, Scott JF, Gregg JM (2007) Nano Lett 7:3787CrossRefADSGoogle Scholar
  14. 14.
    Catalan G, Schilling A, Scott JF, Gregg JM (2007) J Phys Condens Matter 19:132201CrossRefADSGoogle Scholar
  15. 15.
    Schilling A et al, to be publishedGoogle Scholar
  16. 16.
    Pompe W, Gong X, Suo Z, Speck JS (1993) J Appl Phys 74:6012CrossRefADSGoogle Scholar
  17. 17.
    Pertsev NA, Zembilgotov AG (1995) J Appl Phys 78:6170CrossRefADSGoogle Scholar
  18. 18.
    Lukyanchuk IA, Schilling A, Gregg JM, Catalan G, Scott JF (2009) Phys Rev B 79:144111CrossRefADSGoogle Scholar
  19. 19.
    Zhirnov A (1959) Sov Phys JETP 35:822MathSciNetGoogle Scholar
  20. 20.
    Li Z, Chan S-K, Grimsditch MH, Zouboulis ES (1991) J Appl Phys 70:7327CrossRefADSGoogle Scholar
  21. 21.
    Cao W, Cross LE (1991) Phys Rev B 44:5CrossRefADSGoogle Scholar
  22. 22.
    Cao W, Barsch GR (1990) Phys Rev B 41:4334CrossRefADSGoogle Scholar
  23. 23.
    Zhang X, Hashimoto T, Joy DC (1992) Appl Phys Lett 60:784CrossRefADSGoogle Scholar
  24. 24.
    Catalan G, Scott JF, Schilling A, Gregg JM (2007) J Phys Condens Matter 19:022201CrossRefADSGoogle Scholar
  25. 25.
    Stephanovich VA, Lukyanchuk IA, Karkut MG (2005) Phys Rev Lett 94:047601PubMedCrossRefADSGoogle Scholar
  26. 26.
    De Guerville F, Lukyanchuk I, Lahoche L, El-Marssi M (2005) Mater Sci Eng B 120:16CrossRefGoogle Scholar
  27. 27.
    Gharbi M, Sun ZH, Sharma P, White K, arXiv:0904.4909 (2009)Google Scholar
  28. 28.
    Feng F, Cowley JM (1994) Appl Phys Lett 65:1906CrossRefADSGoogle Scholar
  29. 29.
    Franck C, Ravichandran G, Bhattacharya K (2006) Appl Phys Lett 88:102907CrossRefADSGoogle Scholar
  30. 30.
    Streiffer SK, Eastman JA, Fong DD, Thompson C, Munkholm MV, Murty R, Auciello O, Bai GR, Stephenson GB (2002) Phys Rev Lett 89:67601CrossRefADSGoogle Scholar
  31. 31.
    Hehn M, Padovani S, Ounadjela K, Bucher JP (1996) Phys Rev B 54:3428CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. Catalan
    • 1
  • I. Lukyanchuk
    • 2
  • A. Schilling
    • 3
  • J. M. Gregg
    • 3
  • J. F. Scott
    • 1
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Laboratory of Condensed Matter PhysicsUniversity of Picardie Jules VerneAmiensFrance
  3. 3.Centre for Nanostructured Media, School of Maths and PhysicsQueen’s University of BelfastBelfastUK

Personalised recommendations