Journal of Materials Science

, Volume 44, Issue 15, pp 3983–3990 | Cite as

Antifungal efficiency of corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles

  • Vesna Ilić
  • Zoran Šaponjić
  • Vesna Vodnik
  • Ricardo Molina
  • Suzana Dimitrijević
  • Petar Jovančić
  • Jovan Nedeljković
  • Maja RadetićEmail author


This study discusses the possibility of using the corona (electric discharge at atmospheric pressure) treatment for fiber surface activation that can facilitate the loading of Ag nanoparticles (NPs) from colloids onto the polyester and polyamide fabrics and thus enhance their antifungal activity against Candida albicans. The laundering durability of achieved effects and the influence of dyeing of fabrics with disperse dyes on their antifungal efficiency were studied. The morphology of fibers loaded with Ag nanoparticles was characterized by SEM whereas X-ray photoelectron spectroscopy was used for the evaluation of surface chemical changes. Corona pretreated polyester and polyamide fabrics loaded with Ag nanoparticles showed better antifungal properties compared to untreated fabrics. The advantage of corona treated fabrics became even more prominent after washing test, particularly for polyester fabrics. Antifungal efficiency of polyester and polyamide fabrics loaded with Ag nanoparticles were almost unaffected by dyeing process.


Polyamide Fabric Laundering Durability Antifungal Efficiency Fungal Reduction Symmetric Surface Plasmon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support for this study was provided by the Ministry of Science of Republic of Serbia (project 142066) and Eureka project NANOVISION E! 4043. We gratefully acknowledge M. Bokorov (University of Novi Sad, Serbia) for providing SEM measurements.


  1. 1.
    Pohle D, Damm C, Neuhof J, Roesch A, Münstedt H (2001) Polym Compos 15:357Google Scholar
  2. 2.
    Morris CE, Welch CM (1983) Textile Res J 53:725CrossRefGoogle Scholar
  3. 3.
    Nakashima T, Sakagami Y, Ito H, Matsuo M (2001) Textile Res J 71:688Google Scholar
  4. 4.
    Yuranova T, Rincon AG, Bozzi A, Parra S, Pulgarin C, Albers P, Kiwi J (2003) J Photochem Photobiol A 161:27CrossRefGoogle Scholar
  5. 5.
    Hossain MM, Herrmann AS, Hgemann D (2006) Plasma Process Polym 3:299CrossRefGoogle Scholar
  6. 6.
    Hesse A, Höcker H, Umbach KH, Mecheels J (1995) Proceedings of the Harrogate meeting, Harrogate, Great Britain, IWTO, Report no. 12Google Scholar
  7. 7.
    Ueda M, Tokino S (1996) Rev Prog Color 26:9Google Scholar
  8. 8.
    Bozzi A, Yuranova T, Kiwi J (2005) J Photochem Photobiol A 172:27CrossRefGoogle Scholar
  9. 9.
    Lee HJ, Yeo SY, Jeong SH (2003) J Mater Sci 38:2199. doi: 10.1023/B:JMSC.0000017787.53545.b7 CrossRefGoogle Scholar
  10. 10.
    Jeong SH, Hwang YH, Yi SC (2005) J Mater Sci 40:5413. doi: 10.1007/s10853-005-4340-2 CrossRefADSGoogle Scholar
  11. 11.
    Lee HJ, Jeong SH (2005) Textile Res J 75:551CrossRefGoogle Scholar
  12. 12.
    Yeo SY, Lee HJ, Jeong SH (2003) J Mater Sci 38:2143. doi: 10.1023/A:1023767828656 CrossRefGoogle Scholar
  13. 13.
    Ki HY, Kim JH, Kwon SC, Jeong SH (2007) J Mater Sci 42:8020. doi: 10.1007/s10853-007-1572-3 CrossRefADSGoogle Scholar
  14. 14.
    Gorenšek M, Recelj P (2007) Textile Res J 77:138CrossRefGoogle Scholar
  15. 15.
    Hipler UC, Elsner P, Fluhr JW (2005) J Biomed Mater Res B: Appl Biomater 77B:156Google Scholar
  16. 16.
    Radetić M, Ilić V, Vodnik V, Dimitrijević S, Jovančić P, Šaponjić Z, Nedeljković JM (2008) Polym Adv Technol 19:1816CrossRefGoogle Scholar
  17. 17.
    Vuković VV, Nedeljković JM (1993) Langmuir 9:980CrossRefGoogle Scholar
  18. 18.
    Šaponjić ZV, Csencsits R, Rajh T, Dimitrijević N (2003) Chem Mater 15:4521CrossRefGoogle Scholar
  19. 19.
    Briggs D, Seah MP (1983) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley and Sons, UKGoogle Scholar
  20. 20.
    Molina R, Jovančić P, Jocić D, Bertran E, Erra P (2003) Surf Interface Anal 35:128CrossRefGoogle Scholar
  21. 21.
    Brack N, Lamb RN, Pham D, Turner T (1999) Surf Interface Anal 27:1050CrossRefGoogle Scholar
  22. 22.
    De Geyter N, Morent R, Leys C (2006) Surf Coat Technol 201:2460CrossRefGoogle Scholar
  23. 23.
    Pappas D, Bujanda A, Demaree JD, Hirvonen JK, Kosik W, Jensen R, McKnight S (2006) Surf Coat Technol 201:4384CrossRefGoogle Scholar
  24. 24.
    Molina R, Espinós JP, Yubero F, Erra P, González-Elipe AR (2005) Appl Surf Sci 252:1417CrossRefADSGoogle Scholar
  25. 25.
    Wu D, Fang Y (2003) J Colloid Interface Sci 265:234PubMedCrossRefGoogle Scholar
  26. 26.
    Badr Y, Mahmoud MA (2005) J Mol Struct 749:187CrossRefADSGoogle Scholar
  27. 27.
    Damm C, Münstedt H, Rösch A (2007) J Mater Sci 42:6067. doi: 10.1007/s10853-006-1158-5 CrossRefADSGoogle Scholar
  28. 28.
    Shin HS, Choi HC, Jung Y, Kim SB, Song HJ, Shin HJ (2004) Chem Phys Lett 383:418CrossRefADSGoogle Scholar
  29. 29.
    Chung YC, Chen CY (2008) Bioresour Technol 99:2806PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Vesna Ilić
    • 1
  • Zoran Šaponjić
    • 2
  • Vesna Vodnik
    • 2
  • Ricardo Molina
    • 3
  • Suzana Dimitrijević
    • 4
  • Petar Jovančić
    • 1
  • Jovan Nedeljković
    • 2
  • Maja Radetić
    • 1
    Email author
  1. 1.Textile Engineering Department, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Vinča Institute of Nuclear SciencesBelgradeSerbia
  3. 3.Departamento de Tecnologia de TensioactivosIIQAB-CSICBarcelonaSpain
  4. 4.Department of Bioengineering and Biotechnology, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations