Journal of Materials Science

, Volume 44, Issue 19, pp 5102–5112 | Cite as

Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics

  • S. Karimi
  • I. M. ReaneyEmail author
  • Y. Han
  • J. Pokorny
  • I. Sterianou


Bi(1−x)RExFeO3 (BREF100x, RE = La, Nd, Sm, Gd) has been investigated with a view to establish a broad overview of their crystal chemistry and domain structure. For x ≤ 0.1, the perovskite phase in all compositions could be indexed according to the rhombohedral, R3c cell of BiFeO3. For Nd and Sm doped compositions with 0.1 < x ≤ 0.2 and x = 0.15, respectively, a new antipolar phase was stabilised similar in structure to PbZrO3. The orthoferrite, Pnma structure was present for x > 0.1, x > 0.15, and x > 0.2 in Gd, Sm, and Nd doped BiFeO3, respectively. For x > 0.2, La doped compositions became pseudocubic at room temperatures but high angle XRD peaks were broad and asymmetric. These compositions have been indexed as the orthoferrite structure. It was concluded therefore that the orthoferrite phase appeared at lower values of x as the RE ferrite, end member tolerance factor decreased. However, the compositional window over which the PbZrO3-like phase was stable increased with increasing end member tolerance factor but was not found as single phase in La doped compositions at room temperature. On heating, the PbZrO3-like phase in BNF20 transformed to the orthoferrite, Pnma structure. TC for all compositions decreased with decreasing A-site, average ionic polarizabilty and tolerance factor. For compositions with R3c symmetry, superstructure and orientational, and translational (antiphase) domains were observed in a manner typical of an antiphase-tilted, ferroelectric perovskite. For the new PbZrO3-like phase orientational domains were observed.


Differential Scanning Calorimetry BiFeO3 Structural Phase Transition Tolerance Factor Differential Scanning Calorimetry Trace 



The authors would like to thank Professor C. A. Randall, Professor D.C. Sinclair, and Dr. I. Levin for their useful discussions concerning this manuscript.


  1. 1.
    Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) J Phys C: Solid State Phys 15:4835CrossRefGoogle Scholar
  2. 2.
    Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ (1969) Solid State Commun 7:701CrossRefGoogle Scholar
  3. 3.
    Neaton BJ, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) Phys Rev B Condens Matter Mater Phys 71:014113CrossRefGoogle Scholar
  4. 4.
    Teague JR, Gerson R, James WJ (1970) Solid State Commun 8:1073CrossRefGoogle Scholar
  5. 5.
    Kumar MM, Palkar VR, Srinivas K, Suryanarayana SV (2000) Appl Phys Lett 76(19):2764CrossRefGoogle Scholar
  6. 6.
    Sosnowska I, Prezenioslo R, Fischer P, Murashov VA (1996) J Magn Magn Mater 160:384CrossRefGoogle Scholar
  7. 7.
    Fischer P, Polomska M, Sosnowska I, Szymanski M (1980) J Phys C: Solid State Phys 13:1931CrossRefGoogle Scholar
  8. 8.
    Kubel F, Schmid H (1990) Acta Crystallogr B46:698CrossRefGoogle Scholar
  9. 9.
    Nawala KS, Grag A, Upadhyaya A (2008) Mater Lett 62:878CrossRefGoogle Scholar
  10. 10.
    Hill NA (2000) J Phys Chem B24:6694CrossRefGoogle Scholar
  11. 11.
    Fedulov SA, Ladyzhinskii PB, Pyatigorskaya IL, Venevtsev YN (1964) Sov Phys Solid State 6:375Google Scholar
  12. 12.
    Yuan GL, Or SW (2006) J Appl Phys 100:024109CrossRefGoogle Scholar
  13. 13.
    Fiebig M (2005) J Phys D 38:R123CrossRefGoogle Scholar
  14. 14.
    Zhang ST, Zhang Y, Lu MH, Du CL, Chen YF, Liu ZG, Zhu YY, Ming NB (2006) Appl Phys Lett 88:162901CrossRefGoogle Scholar
  15. 15.
    Sosnowska I, Schaffer W, Kockelmann W, Anderson KH, Troyanchuk IO (2002) Appl Phys A: Mater Sci Process 74:S1040CrossRefGoogle Scholar
  16. 16.
    Bai F, Wang J, Wuttig M, Li J, Wang N, Pyatakov AP, Zvezdin AK, Cross LE, Viehland D (2005) Appl Phys Lett 86(3):1CrossRefGoogle Scholar
  17. 17.
    Pradhan AK, Zhang K, Hunter D, Dadson JB, Loutts GB, Bhattacharya P, Katiyar R, Zhang J, Sellmyer DJ (2005) J Appl Phys 97:093903CrossRefGoogle Scholar
  18. 18.
    Lee YH, Wu JM, Lai CH (2006) Appl Phys Lett 88(4):042903CrossRefGoogle Scholar
  19. 19.
    Das SR, Choudhary RNP, Bhattacharya P, Katiyar RS, Dutta P, Manivannan A, Seehra MS (2007) J Appl Phys 101:034104CrossRefGoogle Scholar
  20. 20.
    Yuan GL, Or SW (2006) Appl Phys Lett 89:052905CrossRefGoogle Scholar
  21. 21.
    Uniyal P, Yadav KL (2008) Mater Lett 62(17–18):2858CrossRefGoogle Scholar
  22. 22.
    Woodward DI (2004) The crystal chemistry of bismuth-based perovskite solid solutions. PhD Thesis, University of Sheffield, UKGoogle Scholar
  23. 23.
    Jaffe B, Cook WRJ, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  24. 24.
    Shannon RD (1976) Acta Crystallogr A32:751CrossRefGoogle Scholar
  25. 25.
    Shannon RD (1993) J Appl Phys 73(1):348CrossRefGoogle Scholar
  26. 26.
    Karimi S, Reaney IM, Sterianou I, Levin I (2009) Appl Phys Lett 94(11):112903CrossRefGoogle Scholar
  27. 27.
    Marezio M, Remeika JP, Dernier PD (1970) Acta Crystallogr B26:2008CrossRefGoogle Scholar
  28. 28.
    Sawaguchi E, Maniwa H, Hoshino S (1951) Phys Rev 83(5):1078CrossRefGoogle Scholar
  29. 29.
    Woodward DI, Reaney IM (2005) Acta Crystallogr B61:387CrossRefGoogle Scholar
  30. 30.
    Reaney IM, Colla EL, Setter N (1994) J Appl Phys 33:3984CrossRefGoogle Scholar
  31. 31.
    Glazer AM, Ahtee M, Megaw HD (1972) Acta Crystallogr A28:179Google Scholar
  32. 32.
    Suárez D, Reaney IM, Lee WE (2001) J Mater Res 16(11):3139CrossRefGoogle Scholar
  33. 33.
    Levin I, Stennett MC, Miles GC, Woodward DI, West AR, Reaney IM (2006) Appl Phys Lett 89:122908CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Karimi
    • 1
  • I. M. Reaney
    • 1
    Email author
  • Y. Han
    • 1
  • J. Pokorny
    • 1
  • I. Sterianou
    • 1
  1. 1.Department of Engineering MaterialsUniversity of SheffieldSheffieldUK

Personalised recommendations