Journal of Materials Science

, Volume 44, Issue 19, pp 5167–5181 | Cite as

Fabrication of epitaxial nanostructured ferroelectrics and investigation of their domain structures

  • H. Han
  • K. Lee
  • W. Lee
  • M. Alexe
  • D. Hesse
  • S. BaikEmail author


Nanostructured ferroelectrics are important objects for studies on ferroelectric size effects as well as for applications to memory devices with ultra-high memory density. In the present article, we introduce several approaches for the synthesis of confined ferroelectrics with sizes in and below the hundreds of nanometer range, including top-down processes like e-beam lithography, self-assembly methods like chemical solution deposition, and growth by pulsed laser deposition using stencil masks. Furthermore, the ferroelectric domain structure of part of these nanostructures is investigated by means of synchrotron X-ray diffraction, and its contribution to the ferroelectric properties is discussed.


Piezoelectric Property Misfit Strain Ferroelectric Thin Film Chemical Solution Deposition Piezoresponse Force Microscopy 



The authors thank Y. J. Park, J.-Y. Choi (Pohang Light Source, Pohang, Korea), S. Lee, Y. H. Jeong (Pohang University of Science and Technology, Pohang, Korea), R. Hillebrand, R. Ji, S. K. Lee, A. Lotnyk, M. A. Schubert, S. Senz, and U. Gösele (Max Planck Institute of Microstructure Physics, Halle, Germany), as well as K. Nielsch (Institute of Applied Physics, Hamburg, Germany) for many fruitful discussions and for experimental and analytical contributions. H. Han is grateful for the award of a fellowship of the German Academic Exchange Service (DAAD) and for support by DFG (446 KOR 113/215/0-1) and KRF. Financial support from the Volkswagen Foundation (Project I/80897), the German Ministry of Education and Research (BMBF, FKZ 03N8701) and from the Brain Korea 21 Project are also acknowledged. The experiments at PLS were supported by the MEST (Ministry of Education, Science, and Technology) and POSTECH.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Scott JF, de Araujo CA (1989) Science 246:1400CrossRefGoogle Scholar
  2. 2.
    Auciello O, Scott JF, Ramesh R (1998) Phys Today 51:22CrossRefGoogle Scholar
  3. 3.
    Scott JF (2000) Ferroelectric memories. Springer-Verlag, New YorkCrossRefGoogle Scholar
  4. 4.
    Lee K, Baik S (2006) Annu Rev Mater Sci 36:81CrossRefGoogle Scholar
  5. 5.
    Shaw TM, Trolier-McKinstry S, McIntyre PC (2000) Annu Rev Mater Sci 30:263CrossRefGoogle Scholar
  6. 6.
    Li S, Eastman JA, Li Z, Foster CM, Newnham RE, Cross LE (1996) Phys Lett A 212:341CrossRefGoogle Scholar
  7. 7.
    Ahn CH, Rabe KM, Triscone J-M (2004) Science 303:488CrossRefGoogle Scholar
  8. 8.
    Waser R, Rüdiger A (2004) Nat Mater 3:81CrossRefGoogle Scholar
  9. 9.
    Fong DD, Sephenson GB, Streiffer SK, Eastman JA, Auciello O, Fuoss PH, Thompson C (2004) Science 304:1650CrossRefGoogle Scholar
  10. 10.
    Nagrajan V, Junquera J, He JQ, Jia CL, Waser R, Lee K, Kim YK, Baik S, Zhao T, Ramesh R, Gosez Ph, Rabe KM (2006) J Appl Phys 100:051609CrossRefGoogle Scholar
  11. 11.
    Tybell T, Ahn CH, Triscone J-M (1999) Appl Phys Lett 75:856CrossRefGoogle Scholar
  12. 12.
    Lichtensteiger C, Trinsone J-M (2005) Phys Rev Lett 94:047603CrossRefGoogle Scholar
  13. 13.
    Streiffer SK, Eastman JA, Fong DD, Thompson C, Munkholm A, Ramana Murty MV, Auciello O, Bai GR, Stephenson GB (2002) Phys Rev Lett 89:067601-1CrossRefGoogle Scholar
  14. 14.
    Kornev IA, Fu H, Bellaiche L (2006) J Mater Sci 41:137. doi: CrossRefGoogle Scholar
  15. 15.
    Kim J, Yang SA, Choi YC, Han JK, Jeong KO, Yun YJ, Kim DA, Yang SM, Yoon D, Cheong H, Chang KS, Noh TW, Bu SD (2008) Nano Lett 8:1813CrossRefGoogle Scholar
  16. 16.
    Luo Y, Szafraniak I, Zakharov ND, Nagarajan V, Steinhart M, Wehrspohn RB, Wendorff JH, Ramesh R, Alexe M (2003) Appl Phys Lett 83:440CrossRefGoogle Scholar
  17. 17.
    Urban JJ, Spanier JE, Ouyang L, Yun WS, Park H (2003) Adv Mater 15:423CrossRefGoogle Scholar
  18. 18.
    Gu H, Hu Y, You J, Hu Z, Yuan Y, Zhang T (2007) J Appl Phys 101:024319CrossRefGoogle Scholar
  19. 19.
    Xu G, Ren ZH, Du PY, Weng WJ, Shen G, Han GR (2005) Adv Mater 17:907CrossRefGoogle Scholar
  20. 20.
    Junquera J, Ghosez Ph (2003) Nature 422:506CrossRefGoogle Scholar
  21. 21.
    Gruverman A, Kalinin SV (2006) J Mater Sci 41:107. doi: CrossRefGoogle Scholar
  22. 22.
    Sepliarsky M, Stachiotti MG, Migoni RL (2006) Phys Rev Lett 96:137603CrossRefGoogle Scholar
  23. 23.
    Nagarajan V, Jia CL, Kohlstedt H, Waser R, Misirlioglu IB, Alpay SP, Ramesh R (2005) Appl Phys Lett 86:192910CrossRefGoogle Scholar
  24. 24.
    Chu M-W, Szafraniak I, Scholz R, Harnagea C, Hesse D, Alexe M, Gösele U (2004) Nat Mater 3:87CrossRefGoogle Scholar
  25. 25.
    Wang YG, Zhong WL, Zhang PL (1995) Phys Rev B 51:5311CrossRefGoogle Scholar
  26. 26.
    Wang YG, Zhong WL, Zhang PL (1995) Phys Rev B 51:17235CrossRefGoogle Scholar
  27. 27.
    Kretschmer R, Binder K (1979) Phys Rev B 20:1065CrossRefGoogle Scholar
  28. 28.
    Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, Melngailis J, Auciello O, Ramesh R (2003) Nat Mater 2:43CrossRefGoogle Scholar
  29. 29.
    Lee K, Baik S (2005) Appl Phys Lett 86:202901CrossRefGoogle Scholar
  30. 30.
    Bühlmann S, Dwir B, Baborowski J, Muralt P (2002) Appl Phys Lett 80:3195CrossRefGoogle Scholar
  31. 31.
    Kim YK, Kim SS, Shin H, Baik S (2004) Appl Phys Lett 84:5085CrossRefGoogle Scholar
  32. 32.
    Naumov II, Bellalche L, Fu H (2004) Nature 432:737CrossRefGoogle Scholar
  33. 33.
    Alexe M, Harnagea C, Hesse D, Gösele U (1997) Appl Phys Lett 75:1793CrossRefGoogle Scholar
  34. 34.
    Alexe M, Harnagea C, Hesse D, Gösele U (2001) Appl Phys Lett 79:242CrossRefGoogle Scholar
  35. 35.
    Ganpule CS, Stanishevsky A, Su Q, Aggarwal S, Melngailis J, Williams E, Ramesh R (1999) Appl Phys Lett 75:409CrossRefGoogle Scholar
  36. 36.
    Nagarajan V, Stanishevsky A, Ramesh R (2006) Nanotechnology 17:338CrossRefGoogle Scholar
  37. 37.
    Harnagea C, Alexe M, Schilling J, Choi J, Wehrspohn RB, Hesse D, Gösele U (2003) Appl Phys Lett 83:1827CrossRefGoogle Scholar
  38. 38.
    Shimizu M, Nonomura N, Fujisawa H, Niu H, Honda K (2004) Integr Ferroelectr 62:109CrossRefGoogle Scholar
  39. 39.
    Szafraniak I, Harnagea C, Scholz R, Bhattacharyya S, Hesse D, Alexe M (2003) Appl Phys Lett 83:2211CrossRefGoogle Scholar
  40. 40.
    Alexe M, Hesse D (2006) J Mater Sci 41:1. doi: CrossRefGoogle Scholar
  41. 41.
    Roelofs A, Schneller T, Szot K, Waser R (2002) Appl Phys Lett 81:5231CrossRefGoogle Scholar
  42. 42.
    Ahn SH, Choi SK (2008) Appl Phys Lett 93:113102CrossRefGoogle Scholar
  43. 43.
    Alexe M, Harnagea C, Hesse D (2004) J Electroceramics 12:69CrossRefGoogle Scholar
  44. 44.
    Fujisawa H, Okaniwa M, Nonomura H, Shimizu M, Niu H (2004) J Eur Ceram Soc 24:1641CrossRefGoogle Scholar
  45. 45.
    Ma W, Hesse D, Gösele U (2005) Small 1:837CrossRefGoogle Scholar
  46. 46.
    Lee W, Alexe M, Nielsch K, Gösele U (2005) Chem Mater 17:3325CrossRefGoogle Scholar
  47. 47.
    Lee SK, Lee W, Alexe M, Nielsch K, Hesse D, Gösele U (2005) Appl Phys Lett 86:152906CrossRefGoogle Scholar
  48. 48.
    Clemens S, Schneller T, van der Hart A, Peter F, Waser R (2005) Adv Mater 17:1357CrossRefGoogle Scholar
  49. 49.
    Kronholz S, Rathgeber S, Karthäuser S, Kohlstedt H, Clemens S, Schneller T (2006) Adv Funct Mater 16:2346CrossRefGoogle Scholar
  50. 50.
    Zhu XH, Evans PR, Byrne D, Schilling A, Douglas C, Pollard RJ, Bowman RM, Gregg JM, Morrison FD, Scott JF (2006) Appl Phys Lett 89:122913CrossRefGoogle Scholar
  51. 51.
    Evans PR, Zhu X, Baxter P, McMillen M, McPhillips J, Morrison FD, Scott JF, Pollard RJ, Bowman RM, Gregg JM (2007) Nano Lett 7:1134CrossRefGoogle Scholar
  52. 52.
    Damjanovic D (1998) Rep Prog Phys 61:1267CrossRefGoogle Scholar
  53. 53.
    Ramesh R, Sands T, Keramidas VG (1993) Appl Phys Lett 63:731CrossRefGoogle Scholar
  54. 54.
    Lee KS, Choi JH, Lee JY, Baik S (2001) J Appl Phys 90:4095CrossRefGoogle Scholar
  55. 55.
    Jesse S, Rodriguez BJ, Choudhury S, Baddorf A, Vrejoiu I, Hesse D, Alexe M, Eliseev E, Morozovska AN, Zhang J, Chen L-Q, Kalinin SV (2008) Nat Mater 7:209CrossRefGoogle Scholar
  56. 56.
    Jia C-L, Mi S-B, Urban K, Vrejoiu I, Alexe M, Hesse D (2008) Nat Mater 7:57CrossRefGoogle Scholar
  57. 57.
    Masuda H, Fukuda K (1995) Science 268:1466CrossRefGoogle Scholar
  58. 58.
    Lee W, Han H, Lotnyk A, Schubert MA, Senz S, Alexe M, Hesse D, Baik S, Gösele U (2008) Nat Nanotechnol 3:402CrossRefGoogle Scholar
  59. 59.
    Speck JS, Pompe W (1994) J Appl Phys 76:466CrossRefGoogle Scholar
  60. 60.
    Alpay SP, Roytburd AL (1998) J Appl Phys 83:4714CrossRefGoogle Scholar
  61. 61.
    Lee K, Kim K, Kwon S-J, Baik S (2004) Appl Phys Lett 85:4711CrossRefGoogle Scholar
  62. 62.
    Lee K, Yi H, Park W-H, Kim YK, Baik S (2006) J Appl Phys 100:051615CrossRefGoogle Scholar
  63. 63.
    Han H, Park YJ, Lee SK, Ji R, Le Rhun G, Alexe M, Nielsch K, Hesse D, Gösele U, Baik S (2009) Nanotechnology 20:015301CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • H. Han
    • 1
  • K. Lee
    • 1
  • W. Lee
    • 2
  • M. Alexe
    • 3
  • D. Hesse
    • 3
  • S. Baik
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Korea Research Institute of Standards and ScienceDaejonKorea
  3. 3.Max Planck Institute of Microstructure PhysicsHalleGermany

Personalised recommendations