Journal of Materials Science

, Volume 44, Issue 14, pp 3852–3860 | Cite as

Functionalization of textile materials by alkoxysilane-grafted titanium dioxide

  • Jadwiga Sójka-Ledakowicz
  • Joanna Lewartowska
  • Marcin Kudzin
  • Marcin Leonowicz
  • Teofil JesionowskiEmail author
  • Katarzyna Siwińska-Stefańska
  • Andrzej Krysztafkiewicz


Modern materials, including textiles for specific applications, have to satisfy growing requirements. Regulations concerning man and natural environment protection against harmful substances emission, UV radiation, and electromagnetic field radiation become more and more stringent. Intensive development of nanotechnology offers great possibilities to create novel—conforming to the requirements—multifunctional materials based on textile substrates. Nanoparticles of metal oxides, e.g., titania (TiO2), belong to a group of compounds having photocatalytic properties, which are able to absorb UV radiation and provide antibacterial barrier. The aim of research works was the modification of selected textiles using nanoparticles of metal oxides. Nano-TiO2 and modified nano-TiO2 with aminosilane were applied. In the first stage, the works concerned the methodology development of such nanoparticles incorporation onto selected textile substrates. Commonly used techniques, such as padding and spraying were used as well as sol–gel coating. The evaluation of microstructure of textile fabrics covered with nanostructural titanium dioxide was performed using high-resolution SEM and TEM electron microscopes. Assessment of modified textiles pertained to the determination of protective properties against UV radiation and photocatalytic and antibacterial properties. Absorption spectra of textiles were determined using double beam type of UV–Vis Jasco V-550 with integrating sphere attachment. The same apparatus was used to determine ultraviolet protection factor (UPF) of textiles according to the standard EN 13758-1:2002. Textiles modified with nano-TiO2 demonstrated high absorption of UV radiation in a full wavelength and their good photocatalytic properties were also confirmed.


TiO2 Textile Fabric Photocatalytic Property Aminosilane Ultraviolet Protection Factor 



Research work financed as a research project no. 3 T08A 045 30 from the National Scientific-Research Funds (for the period 2006–2009).


  1. 1.
    Qi K, Daoud WA, Xin JH, Mak CL, Tang W, Cheung WP (2006) J Mater Chem 16:4567. doi: CrossRefGoogle Scholar
  2. 2.
    Beringer J, Höfer D (2004) Melliand Textilber 85:698Google Scholar
  3. 3.
    Reinert G, Fuso F, Hilfiker R, Schmidt E (1997) Textile Chem Color 29:36Google Scholar
  4. 4.
    Herrmann JM (1999) Catal Today 53:115. doi: CrossRefGoogle Scholar
  5. 5.
    Herrmann JM (2005) Top Catal 34:49. doi: CrossRefGoogle Scholar
  6. 6.
    Fujishima A, Rao TN, Tryk DA (2000) J Photo Photobiol C 1:1. doi: CrossRefGoogle Scholar
  7. 7.
    Banerjee S, Gopal J, Muraleedharan P, Tygai AK, Raj B (2006) Curr Sci 90:1378Google Scholar
  8. 8.
    Zhao J, Yang X (2006) Build Environ 38:645. doi: CrossRefGoogle Scholar
  9. 9.
    Wang R, Xin JH, Tao XM, Daoud WA (2004) Chem Phys Lett 398:250. doi: CrossRefGoogle Scholar
  10. 10.
    Hiroshi I (1992) Inorganic antibacterial agent. JP Patent 11035412Google Scholar
  11. 11.
    Daoud WA, Xin JH (2004) J Sol-Gel Sci Technol 29:25. doi: CrossRefGoogle Scholar
  12. 12.
    Barringer EA, Bowen HK (1982) J Am Ceram Soc 65:199CCrossRefGoogle Scholar
  13. 13.
    Wypych G (1999) Handbook of fillers. ChemTec Publishing, TorontoGoogle Scholar
  14. 14.
    Otton FA, Wilkinson G, Gaus PJ (2002) Chemia nieorganiczna, Podstawy. PWN, WarszawaGoogle Scholar
  15. 15.
    Buxbaum G (1998) Industrial inorganic pigment. Wiley, New YorkCrossRefGoogle Scholar
  16. 16.
    Ukaji E, Furusawa T, Sato M, Suzuki N (2007) Appl Surf Sci 254:563. doi: CrossRefGoogle Scholar
  17. 17.
    Hidalgo MC, Bahnemann D (2005) Appl Catal B Environ 61:259. doi: CrossRefGoogle Scholar
  18. 18.
    Zhang M, Wang J, Fu H (2008) J Mater Process Technol 199:274. doi: CrossRefGoogle Scholar
  19. 19.
    Liu M, Gan L, Pang Y, Xu Z, Hao Z, Chen L (2008) Colloid Surf A 317:490. doi: CrossRefGoogle Scholar
  20. 20.
    Ibhadon AO, Greenway GM, Yue Y (2008) Catal Commun 9:153. doi: CrossRefGoogle Scholar
  21. 21.
    Khalil KMS, Baird T, Zaki MI, El-Samahy AA, Awad AM (1998) Colloid Surf A 132:31. doi: CrossRefGoogle Scholar
  22. 22.
    Kawahara T, Ozawa T, Iwasaki M, Tada H, Ito S (2003) J Colloid Interf Sci 267:377. doi: CrossRefGoogle Scholar
  23. 23.
    Jesionowski T, Krysztafkiewicz A (2000) J Non-Cryst Solids 277:45. doi: CrossRefGoogle Scholar
  24. 24.
    Jesionowski T, Siwińska-Stefańska K, Krysztafkiewicz A, Sójka-Ledakowicz J, Koprowska J, Pęczkowska B (2007) Pol J Chem Technol 9:72CrossRefGoogle Scholar
  25. 25.
    Domka L, Krysztafkiewicz A, Krysztafkiewicz W (1982) Urządzenie do powierzchniowej modyfikacji materiałów proszkowych. Polish Patent 119 358Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jadwiga Sójka-Ledakowicz
    • 1
  • Joanna Lewartowska
    • 1
  • Marcin Kudzin
    • 1
  • Marcin Leonowicz
    • 2
  • Teofil Jesionowski
    • 3
    Email author
  • Katarzyna Siwińska-Stefańska
    • 3
  • Andrzej Krysztafkiewicz
    • 3
  1. 1.Textile Research Institute (IW)LodzPoland
  2. 2.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland
  3. 3.Institute of Chemical Technology and EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations