Advertisement

Journal of Materials Science

, Volume 44, Issue 16, pp 4228–4234 | Cite as

Stress corrosion cracking of 2205 duplex stainless steel in H2S–CO2 environment

  • Z. Y. Liu
  • C. F. Dong
  • X. G. LiEmail author
  • Q. Zhi
  • Y. F. ChengEmail author
Article

Abstract

Stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) in H2S–CO2 environment was investigated by electrochemical measurements, slow strain rate test (SSRT), and scanning electron microscopy (SEM) characterization. Results demonstrated that the passive current density of steel increases with the decrease of solution pH and the presence of CO2. When solutions pH was 2.7, the steel SCC in the absence and presence of CO2 is expected to be a hydrogen-based process, i.e., hydrogen-induced cracking (HIC) dominates the SCC of the steel. The presence of CO2 in solution does not affect the fracture mechanism. However, the SCC susceptibility is enhanced when the solution is saturated simultaneously with H2S and CO2. With elevation of solution pH to 4.5, the hydrogen evolution is inhibited, and dissolution is involved in cracking process. Even in the presence of CO2, the additional cathodic reduction of H2CO3 would enhance the anodic reaction rate. Therefore, in addition to the hydrogen effect, anodic dissolution plays an important role in SCC of duplex stainless steel at solution pH of 4.5.

Keywords

Stress Corrosion Crack Hydrogen Embrittlement Duplex Stainless Steel Anodic Current Density Passive Current Density 

Notes

Acknowledgements

This work was supported by Chinese National Science and Technology Infrastructure Platforms Construction Project (No. 2005DKA10400), and Canada Research Chairs Program.

References

  1. 1.
    Oltra R, Desestret A, Mirabal E, Bizouard JP (1987) Corros Sci 27:1251CrossRefGoogle Scholar
  2. 2.
    Van Gelder K, Erlings JG, Damen JWM, Visser A (1987) Corros Sci 27:1271CrossRefGoogle Scholar
  3. 3.
    Barteri M, Mancia F, Tama A, Montagna G (1987) Corros Sci 27:1239CrossRefGoogle Scholar
  4. 4.
    El-Yazgi AA, Hardie D (1998) Corros Sci 40:909CrossRefGoogle Scholar
  5. 5.
    Liu ZD, Huang LM, Gu T (2006) Mater Perform 45:52Google Scholar
  6. 6.
    Turnbull A, Nimmo B (2005) Corros Eng Sci Technol 40:103CrossRefGoogle Scholar
  7. 7.
    Turnbull A, Griffiths A (2003) Corros Eng Sci Technol 38:21CrossRefGoogle Scholar
  8. 8.
    Moura V, Kina AY, Tavares SSM, Lima LD, Mainier FB (2008) J Mater Sci 43:536. doi: https://doi.org/10.1007/s10853-007-1785-5 CrossRefGoogle Scholar
  9. 9.
    Vasconcelos IF, Tavares SSM, Reis FEU, Hamilton FG (2009) J Mater Sci 44:293. doi: https://doi.org/10.1007/s10853-008-3064-5 CrossRefGoogle Scholar
  10. 10.
    Umoren S, Obot I, Obi-Egbedi N (2009) J Mater Sci 44:274. doi: https://doi.org/10.1007/s10853-008-3045-8 CrossRefGoogle Scholar
  11. 11.
    Xia SA, Zhou BX, Chen WJ (2008) J Mater Sci 43:2990. doi: https://doi.org/10.1007/s10853-007-2164-7 CrossRefGoogle Scholar
  12. 12.
    Radiguet B, Etienne A, Pareige P, Sauvag X, Valiev R (2008) J Mater Sci 43:7338. doi: https://doi.org/10.1007/s10853-008-2875-8 CrossRefGoogle Scholar
  13. 13.
    Sozanska M, Kłyk-Spyra K (2006) Mater Charact 56:399CrossRefGoogle Scholar
  14. 14.
    De Moraes FD, Bastian FL, Ponciano JA (2005) Corros Sci 47:1325CrossRefGoogle Scholar
  15. 15.
    Zakroczymski T, Owczarek E (2002) Acta Mater 50:2701CrossRefGoogle Scholar
  16. 16.
    Tsai WT, Chen MS (2000) Corros Sci 42:545CrossRefGoogle Scholar
  17. 17.
    Tsay LW, Young MC, Shin CS, Chan SLI (2007) Fatigue Fract Eng Mater Struct 30:1228CrossRefGoogle Scholar
  18. 18.
    Tsai ST, Yen KP, Shin HC (1998) Corros Sci 40:281CrossRefGoogle Scholar
  19. 19.
    Luu WC, Liu PW, Wu JK (2002) Corros Sci 44:1783CrossRefGoogle Scholar
  20. 20.
    Owczarek K, Zakroczymski T (2000) Acta Mater 48:3059CrossRefGoogle Scholar
  21. 21.
    Chinese National Standard for Stress Corrosion Cracking Tests, GB T15970, 2007Google Scholar
  22. 22.
    ASTM G 30–97 (2003) In: Annual Book of ASTM Standards, vol 03.02. ASTM International, West Conshohocken, PAGoogle Scholar
  23. 23.
    Mancia F (1987) Corros Sci 27:1225CrossRefGoogle Scholar
  24. 24.
    Davies DH, Burstein GT (1980) Corrosion 36:416CrossRefGoogle Scholar
  25. 25.
    Ren CQ, Liu DX, Bai ZQ, Li T (2005) Mater Chem Phys 93:305CrossRefGoogle Scholar
  26. 26.
    Nesic S, Nordsveen M, Nyborg R, Stangeland A (2001) In: Corrosion/2001, Paper No. 01040, Nace, HoustonGoogle Scholar
  27. 27.
    Nesic S, Postlethwaite J, Olsen S (1996) Corrosion 52:280CrossRefGoogle Scholar
  28. 28.
    Videm K, Kvarekval J (1995) Corrosion 51:260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Corrosion and Protection CenterUniversity of Science and Technology BeijingBeijingChina
  2. 2.Department of Mechanical & Manufacturing EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations