Advertisement

Journal of Materials Science

, Volume 44, Issue 14, pp 3819–3823 | Cite as

Properties of a carbon woven fabric filter grown SiC whisker by chemical vapor infiltration

  • Ik Whan Kim
  • Yoo Youl Choi
  • Jun Gyu Kim
  • Doo-Jin ChoiEmail author
Article

Abstract

β-silicon carbide whiskers were synthesized on a carbon fabric using a vapor–solid (VS) mechanism. The morphologies of the SiC deposits changed as deposition time increased. Pore size distribution and mean pore size of the fabric filter was reduced by whisker growth. A particle-trapping test was conducted to examine the efficiency of the filter. Then, the size of the particles infiltrated within the filter was analyzed. The maximum increase rate of the particle trap rate was 136.6% by whisker growth. The fine particles ranged from 550 to 800 nm and could be trapped by forming whiskers on the carbon filaments of the fabric filter. The carbon fabric filter’s gas permeability is 6 times higher than conventional honeycomb filters.

Keywords

Deposition Time Cordierite Fabric Filter Diesel Particulate Filter Whisker Growth 

Notes

Acknowledgement

This work is the outcome of a Manpower Development Program for Energy & Resources supported by the Ministry of Knowledge and Economy (MKE).

References

  1. 1.
    Lonsdate HK (1985) J Membr Sci 10(81):543Google Scholar
  2. 2.
    Lee HS, Kim JG, Choi DJ (2008) J Mater Sci 43(16):5574. doi: https://doi.org/10.1007/s10853-008-2811-y CrossRefGoogle Scholar
  3. 3.
    Park JK, Park JH, Park JW et al (2007) Sep Purif Technol 55:321CrossRefGoogle Scholar
  4. 4.
    Lim DC, Joo BI, Jun JH, Choi DJ (2005) J Mater Sci 40:3025. doi: https://doi.org/10.1007/s10853-005-2388-7 CrossRefGoogle Scholar
  5. 5.
    Dogan CP, Hawk JA (2000) J Mater Sci 35:5793. doi: https://doi.org/10.1023/A:1026721418251 CrossRefGoogle Scholar
  6. 6.
    Sharma NK, Williams WS (1984) J Am Ceram Soc 67:715CrossRefGoogle Scholar
  7. 7.
    Lee JG, Cutler IB (1975) Am Ceram Soc Bull 54:195Google Scholar
  8. 8.
    Sedaka N, Ajiri K (1972) J Am Ceram Soc 55:540CrossRefGoogle Scholar
  9. 9.
    Milewski JV, Gac FD, Petrovic JJ et al (1985) J Mater Sci 20:1160. doi: https://doi.org/10.1007/BF01026309 CrossRefGoogle Scholar
  10. 10.
    Ahn HS, Choi DJ (2002) Surf Coat Technol 154:276CrossRefGoogle Scholar
  11. 11.
    Youngblood GE, Senor DJ, Jones RH et al (2002) Compos Sci Technol 62(9):1127CrossRefGoogle Scholar
  12. 12.
    Leu IC, Hon MH (2002) J Cryst Growth 236:171–175CrossRefGoogle Scholar
  13. 13.
    Law M, Goldberger J, Yang P (2004) Annu Rev Mater Res 34:83–122CrossRefGoogle Scholar
  14. 14.
    Jung WS (2006) Bull Korean Chem Soc 27:1235–1238CrossRefGoogle Scholar
  15. 15.
    Lee YJ, Choi DJ, Kim SS, Lee HL, Kim HD (2004) Surf Coat Technol 177–178:415–419CrossRefGoogle Scholar
  16. 16.
    Park WS, Joo BJ, Choi DJ (2005) J Mater Sci 40:5529. doi: https://doi.org/10.1007/s10853-005-4516-9 CrossRefGoogle Scholar
  17. 17.
    Leu I, Ku Y, Hon M (1998) Mater Chem Phys 56:256–261CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ik Whan Kim
    • 1
  • Yoo Youl Choi
    • 1
  • Jun Gyu Kim
    • 1
  • Doo-Jin Choi
    • 1
    Email author
  1. 1.Department of Ceramic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations