Advertisement

Journal of Materials Science

, Volume 44, Issue 14, pp 3900–3904 | Cite as

Bridging stresses from R-curves of silicon nitrides

  • S. Fünfschilling
  • T. Fett
  • M. J. Hoffmann
  • R. Oberacker
  • H. Jelitto
  • G. A. Schneider
  • M. Härtelt
  • H. Riesch-Oppermann
Letter

The increasing crack resistance (R-curve) behaviour of ceramic materials is of high interest for technical applications. The initial value at the onset of crack extension is called the crack-tip toughness KI0. Very often but not in all cases a saturation of KR → KR,max is observed. Whereas silicon nitride ceramics show an increase of KR up to saturation within a few micrometers, alumina exhibits a comparably low initial steepness and shows saturation even after some mm crack extension.

Several reasons can be responsible for this effect. In coarse-grained materials, large grains can transmit tractions between the two crack faces resulting in so-called bridging stresses acting against the crack opening. As the consequence, such bridging effects shield the crack tip partially from the applied loads.

R-curve behaviour is commonly described by a relation KR = f(Δa) in which KR is the stress intensity factor necessary for crack propagation by an amount of Δa. This would be an appropriate...

Keywords

Stress Intensity Factor Y2O3 Silicon Nitride Crack Opening Displacement Crack Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Marshall DB, Swain MV (1988) J Am Ceram Soc 71:399CrossRefGoogle Scholar
  2. 2.
    Ogawa T, Llorca J (1994) J Am Ceram Soc 77:961CrossRefGoogle Scholar
  3. 3.
    Okada A, Hirosaki N (1990) J Mater Sci 25:1656ADSCrossRefGoogle Scholar
  4. 4.
    Pezzotti G, Muraki N, Maeda N, Satou K, Nishida T (1999) J Am Ceram Soc 82:1249CrossRefGoogle Scholar
  5. 5.
    Pezzotti G, Ichimaru H, Ferroni L (2001) JACS 84(8):1785Google Scholar
  6. 6.
    Kruzic JJ, Cannon RM, Ager JW III, Ritchie RO (2005) Acta Mater 53:2595CrossRefGoogle Scholar
  7. 7.
    Fett T, Munz D, Kounga Njiwa AB, Rödel J, Quinn GD (2005) J Eur Ceram Soc 25:29CrossRefGoogle Scholar
  8. 8.
    Fett T, Munz D, Thun G, Bahr HA (1995) J Am Ceram Soc 78:949CrossRefGoogle Scholar
  9. 9.
    Fett T, Fünfschilling S, Hoffmann MJ, Oberacker R, Jelitto H, Schneider GA (2008) J Am Ceram Soc 91:3638Google Scholar
  10. 10.
    Fünfschilling S, Fett T, Hoffmann MJ, Oberacker R, Jelitto H, Schneider GA (2009) J Mater Sci Lett 44:335Google Scholar
  11. 11.
    Fett T, Munz D (2006) Arch Appl Mech 76:667Google Scholar
  12. 12.
    Harwell Program Library, Subroutine V02AD, AERE Harwell, Didcot, Oxon, OX11 0RA, UKGoogle Scholar
  13. 13.
    Fett T, Fünfschilling S, Hoffmann MJ, Oberacker R (2008) Int J Fract 153:153Google Scholar
  14. 14.
    Li CW, Yamanis J (1989) Ceram Eng Sci Proc 10:632CrossRefGoogle Scholar
  15. 15.
    Nishida T, Hanaki Y (1995) J Am Ceram Soc 78:3113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Fünfschilling
    • 1
  • T. Fett
    • 1
  • M. J. Hoffmann
    • 1
  • R. Oberacker
    • 1
  • H. Jelitto
    • 2
  • G. A. Schneider
    • 2
  • M. Härtelt
    • 3
  • H. Riesch-Oppermann
    • 3
  1. 1.Institut für Keramik im MaschinenbauUniversität KarlsruheKarlsruheGermany
  2. 2.Institut für keramische HochleistungswerkstoffeTechnische Universität Hamburg-HarburgHamburgGermany
  3. 3.Institut für Materialforschung IIForschungszentrum KarlsruheKarlsruheGermany

Personalised recommendations