Advertisement

Journal of Materials Science

, Volume 44, Issue 14, pp 3758–3763 | Cite as

Electrophoretic deposition of silver from organic PDADMAC-stabilized suspensions

  • Max Kinzl
  • Klaus ReichmannEmail author
  • Lukas Andrejs
Article
  • 97 Downloads

Abstract

This study on the electrophoretic deposition (EPD) of silver particles illustrates the influence of the electric field strength on the surface morphology of the deposit. Experiments were performed in ethanol- and methylethylketone (MEK)-suspensions under a direct electric field ranging from 50 to 360 V/cm. The charging agent PDADMAC (poly-(diallyldimethyl)-ammonium-chloride) proved to have a good electrostatic stabilizing effect in both systems and led to a positive zeta-potential in EtOH and to negatively charged particles in MEK. The yield of the deposits showed a linear relation with electric field strength which agrees with Hamakers law for the kinetic of EPD. Layers deposited at low electric field strengths exhibited a smooth and plane surface. Values higher than 180 V/cm resulted in the formation of parallel grooves. The morphology changed again at fields exceeding 360 V/cm and exhibited irregularly distributed hillocks.

Keywords

EtOH Electric Field Strength Silver Particle Electrophoretic Deposition Silver Powder 

Notes

Acknowledgement

This work was supported by EPCOS OHG, Deutschlandsberg, Austria.

References

  1. 1.
    Van Tassel J, Randall CA (2004) J Mater Sci 39:867. doi: https://doi.org/10.1023/B:JMSC.0000012916.92366.48 CrossRefGoogle Scholar
  2. 2.
    Zarbov M, Brandon D, Gal-Or L, Cohen N (2006) Key Eng Mater 314:95CrossRefGoogle Scholar
  3. 3.
    Zeiner J, Clasen R (2006) Key Eng Mater 314:57CrossRefGoogle Scholar
  4. 4.
    Tabellion J, Clasen R (2004) J Mater Sci 39:803. doi: https://doi.org/10.1023/B:JMSC.0000012907.52051.fb CrossRefGoogle Scholar
  5. 5.
    Uchikoshi T, Ozawa K, Hatton BD, Sakka Y (2001) J Mater Res 16:312CrossRefGoogle Scholar
  6. 6.
    Sakurada O, Suzuki K, Miura T, Hashiba M (2004) J Mater Sci 39:1845. doi: https://doi.org/10.1023/B:JMSC.0000016200.89677.57 CrossRefGoogle Scholar
  7. 7.
    Basu RN, Randall CA, Mayo MJ (2001) J Am Ceram Soc 84:33CrossRefGoogle Scholar
  8. 8.
    Ma J, Cheng W (2002) Mater Lett 56:721CrossRefGoogle Scholar
  9. 9.
    Lebrette S, Pagnoux C, Abélard P (2006) J Eur Ceram Soc 26:2727CrossRefGoogle Scholar
  10. 10.
    Meng X, Kwon TY, Kim KH (2007) Key Eng Mater 330–332:609CrossRefGoogle Scholar
  11. 11.
    Monragón-Cortez P, Vargas-Gutiérrez G (2004) Mater Lett 58:1336CrossRefGoogle Scholar
  12. 12.
    Kang N, Li JF (2006) J Ceram Soc Jpn 114:128CrossRefGoogle Scholar
  13. 13.
    Hamaker HC (1940) Trans Faraday Soc 36:279CrossRefGoogle Scholar
  14. 14.
    Morrison ID, Ross S (2002) Colloidal dispersions; suspensions, emulsions and foams. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for Chemistry and Technology of MaterialsGraz University of TechnologyGrazAustria
  2. 2.Institute of Materials ChemistryVienna University of TechnologyWienAustria

Personalised recommendations