Journal of Materials Science

, Volume 44, Issue 19, pp 5113–5119 | Cite as

Strain-induced artificial multiferroicity in Pb(Zr0.53Ti0.47)O3/Pb(Fe0.66W0.33)O3 layered nanostructure at ambient temperature

  • Ashok Kumar
  • R. S. KatiyarEmail author
  • Ramesh Nath Premnath
  • Carlos Rinaldi
  • J. F. ScottEmail author


Layered nanostructures (LNs) of the commercial ferroelectric Pb(Zr0.53Ti0.47)O3 (PZT) and the natural ferroic relaxor Pb(Fe0.66W0.33)O3 (PFW) were fabricated with a periodicity of PZT/PFW/PZT (~5/1/5 nm, thickness ~250 nm) on MgO substrates by pulsed laser deposition. The dielectric behavior of these LNs were investigated over a wide range of temperatures and frequencies, observing Debye-type relaxation with marked deviation at elevated temperatures (>400 K). High dielectric constant and very low dielectric loss were observed below 100 kHz and 400 K, whereas the dielectric constant decreases and loss increases with increase in frequency, similar to relaxor ferroelectrics. Asymmetric ferroelectric hysteresis loops across UP and DOWN electric field were observed with high remanent polarization (Pr) of about 33 μC/cm2. High imprint (~5–7 V across 250 nm thin films) were seen in ferroelectric hysteresis that may be due to charge accumulation at the interface of layers or significant amount of strain (~3.21) across the layers. Room temperature ferromagnetic hysteresis was observed with remanent magnetization 5.32 emu/cc and a coercive field of ~550 Oe. Temperature and field dependent leakage current densities showed very low leakage ~10−7–10−5 A/cm2 over 500 kV/cm. We observed imprint in hysteresis that may be due to charge accumulation at the interface of layers or active role of polar nano regions (PNRs) situated in the PFW regions.


BiFeO3 Coercive Field Leakage Current Density Ferroelectric Thin Film Relaxor Ferroelectric 



This work was partially supported by DOD W911NF-05-1-0340, W911NF-06-1-0030 and W911NF-06-1-0183 grants.


  1. 1.
    Scott JF (2007) Science 315:954CrossRefGoogle Scholar
  2. 2.
    Spaldin NA, Fiebig M (2005) Science 309:391CrossRefGoogle Scholar
  3. 3.
    Eerenstein W, Mathur ND, Scott JF (2006) Nature 442:759CrossRefGoogle Scholar
  4. 4.
    Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Science 299:1719CrossRefGoogle Scholar
  5. 5.
    Ortega N, Kumar A, Katiyar RS, Scott JF (2007) Appl Phys Lett 91:102902CrossRefGoogle Scholar
  6. 6.
    Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Phys Rev B 77:014111CrossRefGoogle Scholar
  7. 7.
    Zheng H, Wang J, Lo SE, Ma Z, Mohaddes-Ardabili L, Zhao T, Salamanca-Riba L, Shinde SR, Ogale SB, Bai F, Viehland D, Jia Y, Schlom DG, Wuttig M, Roytburd A, Ramesh R (2004) Science 303:661CrossRefGoogle Scholar
  8. 8.
    Levstik A, Bobnar V, Filipič C, Holc J, Kosec M, Blinc R, Trontelj Z, Jagličić Z (2007) Appl Phys Lett 91:012905CrossRefGoogle Scholar
  9. 9.
    Kumar A, Sharma GL, Katiyar RS, Pirc R, Blinc R, Scott JF (2008) condmat arXiv: 0812.3875v2Google Scholar
  10. 10.
    Kumar A, Rivera I, Katiyar RS, Scott JF (2008) Appl Phys Lett 92:132913CrossRefGoogle Scholar
  11. 11.
    Schmid H (1994) Feroelectrics 162:317CrossRefGoogle Scholar
  12. 12.
    Ramesh R, Spaldin NA (2007) Nature 6:21CrossRefGoogle Scholar
  13. 13.
    Barbosa J, Almeida B, Mendez MA, Rolo AG, Araújo JP (2007) Phys Sat Sol (a) 204:1371Google Scholar
  14. 14.
    Muralidharan R, Dix N, Skumryev V, Varela M, Sanchez F, Fontcuberta J (2008) J Appl Phys 103:07E301CrossRefGoogle Scholar
  15. 15.
    Chaudhuri AR, Ranjith R, Krupanidhi SB, Mangalam R, Sundaresan A (2007) Appl Phys Lett 90:122902CrossRefGoogle Scholar
  16. 16.
    Li YW, Sun JL, Chen J, Meng XJ, Chu JH (2005) Appl Phys Lett 87:182902CrossRefGoogle Scholar
  17. 17.
    Abe K, Komatsu S (1995) J Appl Phys 77:6461CrossRefGoogle Scholar
  18. 18.
    Abe K, Komatsu S, Yanase N, Sano K, Kawakubo T (1997) Jpn J Appl Phys 36:5575CrossRefGoogle Scholar
  19. 19.
    Abe K, Komatsu S, Yanase N, Sano K, Kawakubo T (1997) Jpn J Appl Phys 36:5846CrossRefGoogle Scholar
  20. 20.
    Erbil A, Kim Y, Gerhardt RA (1996) Phys Rev Lett 77:1628CrossRefGoogle Scholar
  21. 21.
    Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefGoogle Scholar
  22. 22.
    Correa M, Kumar A, Katiyar RS (2008) J Am Cer Soc 91:1788CrossRefGoogle Scholar
  23. 23.
    Correa M, Kumar A, Katiyar RS (2008) Integr Ferroelectr 100:1CrossRefGoogle Scholar
  24. 24.
    Catalan G (2006) Appl Phys Lett 88:102902CrossRefGoogle Scholar
  25. 25.
    Ortega N, Kumar A, Katiyar RS (2009) Phys Rev B (in press)Google Scholar
  26. 26.
    Warren W, Tuttle B, Dimos D, Pike G, Al-Shareef H, Ramesh R, Evans J (1998) Jpn J Appl Phys Part 1 35:1521CrossRefGoogle Scholar
  27. 27.
    Dimos D, Warren W, Sinclair M, Tuttle B, Schwartz R (1994) J Appl Phys 76:4305CrossRefGoogle Scholar
  28. 28.
    Ye ZG, Schmid H (1994) Ferroelectrics 162:119CrossRefGoogle Scholar
  29. 29.
    Jiang AQ, Scott JF, Dawber M, Wang C (2002) J Appl Phys 92:6756CrossRefGoogle Scholar
  30. 30.
    Lou XJ, Zhang M, Redfern SAT, Scott JF (2007) Phys Rev B 75:224104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Physics and Institute for Functional NanomaterialsUniversity of Puerto RicoSan JuanUSA
  2. 2.Argonne National LaboratoryArgonneUSA
  3. 3.Department of Chemical Engineering and Institute for Functional NanomaterialsUniversity of Puerto RicoMayagüezUSA
  4. 4.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations