Journal of Materials Science

, Volume 44, Issue 14, pp 3719–3730 | Cite as

Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology

  • D. Dimas
  • I. Giannopoulou
  • D. PaniasEmail author


Geopolymerization is an innovative technology that can transform several solid aluminosilicate materials into useful products called geopolymers or inorganic polymers. Although the geopolymerization mechanism is not well understood, the most proposed mechanism includes four parallel stages: (a) dissolution of solid aluminosilicate materials in alkaline sodium silicate solution, (b) oligomerization of Si and/or Si–Al in aqueous phase, (c) polymerization of the oligomeric species, and (d) bonding of undissolved solid particles in the polymer. It is obvious that polymerization in sodium silicate solutions comprises a fundamental process in geopolymerization technology. Therefore, this article aims at studying experimentally the polymerization stage in synthetic pure sodium silicate solutions. The structure of sodium silicate gels as a function of the SiO2/Na2O molar ratio is examined and their hardness as well as hydrolytic stability are determined. In addition, the effect of aluminum incorporation in the hydrolytic stability of these gels is also examined. Finally, the structure of sodium silicate and aluminosilicate gels is correlated to the measured properties drawing very useful conclusions that could be applied on geopolymerization technology.


Vickers Hardness Silanol Group Sodium Silicate Hydrolytic Stability Sodium Silicate Solution 



The authors would like to thank the Senator Committee of Basic Research of the National Technical University of Athens, Programme “PEBE-2007”, R.C.·No.:65/1634 for the financial support of this study.


  1. 1.
    Davidovits J (1999) Geopolymer ‘99 2nd international conference, Saint-Quentin, France, pp 9–39Google Scholar
  2. 2.
    Xu H (2002) PhD Thesis, Department of Chemical Engineering, University of MelbourneGoogle Scholar
  3. 3.
    Davidovits J (2005) Proceedings of the world congress geopolymer 2005, Saint-Quentin, France, pp 9–15Google Scholar
  4. 4.
    Palomo A, Grutzeck MW, Blanco MT (1999) Cem Concr Res 29:1323CrossRefGoogle Scholar
  5. 5.
    Cheng TW, Chiu JP (2003) Miner Eng 16:205CrossRefGoogle Scholar
  6. 6.
    Pacheco-Torgal F, Castro-Gomes JP, Jalali S (2005) Proceedings of the world congress geopolymer 2005, Saint-Quentin, France, pp 93–98Google Scholar
  7. 7.
    Panias D, Giannopoulou IP, Perraki T (2007) Colloids Surf A Physicochem Eng Aspects 301:246CrossRefGoogle Scholar
  8. 8.
    Maragkos I, Giannopoulou IP, Panias D (2009) Miner Eng 22:196CrossRefGoogle Scholar
  9. 9.
    Dimas D, Giannopoulou IP, Panias D (2009) Miner Process Extr Metall Rev (in press)Google Scholar
  10. 10.
    Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapters 15–16. Institute Géopolymère, Saint-Quentin, pp 333–365Google Scholar
  11. 11.
    McCormick AV, Bell AT, Radke CJ (1989) J Phys Chem 93(5):1737CrossRefGoogle Scholar
  12. 12.
    Duxson P, Fernandez-Jimenez A, Provis JL, Luckey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi: CrossRefGoogle Scholar
  13. 13.
    Aagard P, Helgeson HC (1982) Am J Sci 282:237CrossRefGoogle Scholar
  14. 14.
    Phair JW, Van Deventer JSJ (2002) Int J Miner Process 66:121CrossRefGoogle Scholar
  15. 15.
    Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapter 4. Institute Géopolymère, Saint-Quentin, pp 61–65Google Scholar
  16. 16.
    Davidovits J (1999) Proceedings of the geopolymer international conference 1999, Saint-Quentin, France, pp 9–40Google Scholar
  17. 17.
    Warren BE, Biscoe L (1938) J Am Ceram Soc 21(2):49CrossRefGoogle Scholar
  18. 18.
    Warren BE, Loring AD (1935) J Am Ceram Soc 18(1–12):269CrossRefGoogle Scholar
  19. 19.
    Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York, pp 336–342Google Scholar
  20. 20.
    Sefcik J, McCormick AV (1997) Ceram Process 43:2773Google Scholar
  21. 21.
    Knight CTG, Balec RJ, Kinrade SD (2007) Angew Chem 119:8296CrossRefGoogle Scholar
  22. 22.
    Bass JL, Turner GL (1997) J Phys Chem B 101:10638CrossRefGoogle Scholar
  23. 23.
    Florke OW et al (2008) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co., WeinheimGoogle Scholar
  24. 24.
    Elliott SR (2001) Amorphous materials: medium-range order, encyclopedia of materials: science and technology. Elsevier Science Ltd., pp 215–220CrossRefGoogle Scholar
  25. 25.
    Hadke M, Mozgawa W (1993) Vib Spectrosc 5:75CrossRefGoogle Scholar
  26. 26.
    Clayden NJ, Esposito S, Aronne A, Pernice P (1999) J Non-Cryst Solids 258:11CrossRefGoogle Scholar
  27. 27.
    Lecomte I, Henrist C, Liegeois M, Maseri F, Rulmont A, Cloots R (2006) J Eur Ceram Soc 26:3789CrossRefGoogle Scholar
  28. 28.
    Sitarz M, Handke M, Mozgawa W (2000) Spectrochemica Acta A 56:1819CrossRefGoogle Scholar
  29. 29.
    Iler RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
  30. 30.
    Morrow BA, McFarlan AJ (1991) Langmuir 7:1695CrossRefGoogle Scholar
  31. 31.
    Burneau A, Barres O, Gallas JP, Lavalley JC (1990) Langmuir 6:1364CrossRefGoogle Scholar
  32. 32.
    Jantzen CM, Plodinec MJ (1984) J Non-Cryst Solids 67:207CrossRefGoogle Scholar
  33. 33.
    Sundararajan G, Roy M (2001) Hardness testing, encyclopedia of materials: science and technology. Elsevier Science Ltd., Amsterdam, pp 3728–3736CrossRefGoogle Scholar
  34. 34.
    Richerson DW (1992) Modern ceramic engineering: properties, processing and use in design. Marcel Dekker, pp 179Google Scholar
  35. 35.
    Yamasaki TK, Nishioka M, Yanagisawa K, Ioku K (1992) J Mater Sci Lett 11(4):233CrossRefGoogle Scholar
  36. 36.
    Park CY, Yoon SD, Yun YH (2007) J Ceram Process Res 8(6):435Google Scholar
  37. 37.
    Ischenko V, Harshe R, Riedel R, Woltersdorf J (2006) J Organomet Chem 691:4086CrossRefGoogle Scholar
  38. 38.
    Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapter 26. Institute Géopolymère, Saint-Quentin, pp 547–574Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratory of Metallurgy, School of Mining and Metallurgical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations