Polymerization in sodium silicate solutions: a fundamental process in geopolymerization technology
- 2.4k Downloads
- 82 Citations
Abstract
Geopolymerization is an innovative technology that can transform several solid aluminosilicate materials into useful products called geopolymers or inorganic polymers. Although the geopolymerization mechanism is not well understood, the most proposed mechanism includes four parallel stages: (a) dissolution of solid aluminosilicate materials in alkaline sodium silicate solution, (b) oligomerization of Si and/or Si–Al in aqueous phase, (c) polymerization of the oligomeric species, and (d) bonding of undissolved solid particles in the polymer. It is obvious that polymerization in sodium silicate solutions comprises a fundamental process in geopolymerization technology. Therefore, this article aims at studying experimentally the polymerization stage in synthetic pure sodium silicate solutions. The structure of sodium silicate gels as a function of the SiO2/Na2O molar ratio is examined and their hardness as well as hydrolytic stability are determined. In addition, the effect of aluminum incorporation in the hydrolytic stability of these gels is also examined. Finally, the structure of sodium silicate and aluminosilicate gels is correlated to the measured properties drawing very useful conclusions that could be applied on geopolymerization technology.
Keywords
Vickers Hardness Silanol Group Sodium Silicate Hydrolytic Stability Sodium Silicate SolutionNotes
Acknowledgement
The authors would like to thank the Senator Committee of Basic Research of the National Technical University of Athens, Programme “PEBE-2007”, R.C.·No.:65/1634 for the financial support of this study.
References
- 1.Davidovits J (1999) Geopolymer ‘99 2nd international conference, Saint-Quentin, France, pp 9–39Google Scholar
- 2.Xu H (2002) PhD Thesis, Department of Chemical Engineering, University of MelbourneGoogle Scholar
- 3.Davidovits J (2005) Proceedings of the world congress geopolymer 2005, Saint-Quentin, France, pp 9–15Google Scholar
- 4.Palomo A, Grutzeck MW, Blanco MT (1999) Cem Concr Res 29:1323CrossRefGoogle Scholar
- 5.Cheng TW, Chiu JP (2003) Miner Eng 16:205CrossRefGoogle Scholar
- 6.Pacheco-Torgal F, Castro-Gomes JP, Jalali S (2005) Proceedings of the world congress geopolymer 2005, Saint-Quentin, France, pp 93–98Google Scholar
- 7.Panias D, Giannopoulou IP, Perraki T (2007) Colloids Surf A Physicochem Eng Aspects 301:246CrossRefGoogle Scholar
- 8.Maragkos I, Giannopoulou IP, Panias D (2009) Miner Eng 22:196CrossRefGoogle Scholar
- 9.Dimas D, Giannopoulou IP, Panias D (2009) Miner Process Extr Metall Rev (in press)Google Scholar
- 10.Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapters 15–16. Institute Géopolymère, Saint-Quentin, pp 333–365Google Scholar
- 11.McCormick AV, Bell AT, Radke CJ (1989) J Phys Chem 93(5):1737CrossRefGoogle Scholar
- 12.Duxson P, Fernandez-Jimenez A, Provis JL, Luckey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi: https://doi.org/10.1007/s10853-006-0637-z CrossRefGoogle Scholar
- 13.Aagard P, Helgeson HC (1982) Am J Sci 282:237CrossRefGoogle Scholar
- 14.Phair JW, Van Deventer JSJ (2002) Int J Miner Process 66:121CrossRefGoogle Scholar
- 15.Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapter 4. Institute Géopolymère, Saint-Quentin, pp 61–65Google Scholar
- 16.Davidovits J (1999) Proceedings of the geopolymer international conference 1999, Saint-Quentin, France, pp 9–40Google Scholar
- 17.Warren BE, Biscoe L (1938) J Am Ceram Soc 21(2):49CrossRefGoogle Scholar
- 18.Warren BE, Loring AD (1935) J Am Ceram Soc 18(1–12):269CrossRefGoogle Scholar
- 19.Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New York, pp 336–342Google Scholar
- 20.Sefcik J, McCormick AV (1997) Ceram Process 43:2773Google Scholar
- 21.Knight CTG, Balec RJ, Kinrade SD (2007) Angew Chem 119:8296CrossRefGoogle Scholar
- 22.Bass JL, Turner GL (1997) J Phys Chem B 101:10638CrossRefGoogle Scholar
- 23.Florke OW et al (2008) Silica, Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co., WeinheimGoogle Scholar
- 24.Elliott SR (2001) Amorphous materials: medium-range order, encyclopedia of materials: science and technology. Elsevier Science Ltd., pp 215–220CrossRefGoogle Scholar
- 25.Hadke M, Mozgawa W (1993) Vib Spectrosc 5:75CrossRefGoogle Scholar
- 26.Clayden NJ, Esposito S, Aronne A, Pernice P (1999) J Non-Cryst Solids 258:11CrossRefGoogle Scholar
- 27.Lecomte I, Henrist C, Liegeois M, Maseri F, Rulmont A, Cloots R (2006) J Eur Ceram Soc 26:3789CrossRefGoogle Scholar
- 28.Sitarz M, Handke M, Mozgawa W (2000) Spectrochemica Acta A 56:1819CrossRefGoogle Scholar
- 29.Iler RK (1979) The chemistry of silica. Wiley, New YorkGoogle Scholar
- 30.Morrow BA, McFarlan AJ (1991) Langmuir 7:1695CrossRefGoogle Scholar
- 31.Burneau A, Barres O, Gallas JP, Lavalley JC (1990) Langmuir 6:1364CrossRefGoogle Scholar
- 32.Jantzen CM, Plodinec MJ (1984) J Non-Cryst Solids 67:207CrossRefGoogle Scholar
- 33.Sundararajan G, Roy M (2001) Hardness testing, encyclopedia of materials: science and technology. Elsevier Science Ltd., Amsterdam, pp 3728–3736CrossRefGoogle Scholar
- 34.Richerson DW (1992) Modern ceramic engineering: properties, processing and use in design. Marcel Dekker, pp 179Google Scholar
- 35.Yamasaki TK, Nishioka M, Yanagisawa K, Ioku K (1992) J Mater Sci Lett 11(4):233CrossRefGoogle Scholar
- 36.Park CY, Yoon SD, Yun YH (2007) J Ceram Process Res 8(6):435Google Scholar
- 37.Ischenko V, Harshe R, Riedel R, Woltersdorf J (2006) J Organomet Chem 691:4086CrossRefGoogle Scholar
- 38.Davidovits J (2008) Geopolymer chemistry & applications, 2nd edn, chapter 26. Institute Géopolymère, Saint-Quentin, pp 547–574Google Scholar