Advertisement

Journal of Materials Science

, Volume 44, Issue 14, pp 3712–3718 | Cite as

Preparation of porous polyacrylate/poly(ethylene glycol) interpenetrating network hydrogel and simplification of Flory theory

  • Qunwei Tang
  • Xiaoming Sun
  • Qinghua Li
  • Jianming Lin
  • Jihuai WuEmail author
Article

Abstract

In this article, we successfully designed and fabricated polyacrylate/poly(ethylene glycol) interpenetrating network (PAC/PEG IPN) hydrogel by a two-step technique. The influences of synthesis parameters, such as crosslinker dosage and neutralization degree of PAC, on the equilibrium swelling ratio (SR) of the PAC/PEG IPN hydrogel were investigated. Based on Flory theory, a simplified experiential formula \( Q_{{{\text{H}}_{2} {\text{O}}}}^{5/3} = 14.72I^{ - 1} + 207.43 \) was proposed. The results revealed that the theoretical SR of the PAC/PEG IPN hydrogel was consistent with experimental value in the presence of univalent salt solution. In this case, the SR of the hydrogel can be calculated without measurement. While for multivalent salt solutions, the theoretical and experimental results are inconsistent owing to chelations between carboxylic and carboxylate groups of the PAC/PEG hydrogels and the cations in the solution.

Keywords

Acrylic Acid Crosslinking Density Swell Ratio Ammonium Peroxydisulfate Macromolecule Chain 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 50572030, 50842027), the Key Science Technology Program by the Ministry of Education, China (No. 206074), Specialized Research Fund for the Doctoral Program of Chinese Higher Education (No. 20060385001), and the National High Technology Research and Development Program of China (863 Program) (No. SQ2008AA03Z2470974).

References

  1. 1.
    Buchholz F, Graham A (1997) Modern superabsorbent polymer technology. Wiley, New YorkGoogle Scholar
  2. 2.
    Asoh T, Kaneko T, Matsusaki M (2006) J Control Release 110:387CrossRefGoogle Scholar
  3. 3.
    Zhang YX, Wu FP, Li MZ (2005) Polymer 46:7695CrossRefGoogle Scholar
  4. 4.
    Pourjavadi A, Mirjalili BF, Entezami AA (2001) Eur Polym J 37:2111CrossRefGoogle Scholar
  5. 5.
    Durme KV, Mele BV, Loos W (2005) Polymer 46:9851CrossRefGoogle Scholar
  6. 6.
    Xiao XC, Chu LY, Chen WM (2005) Polymer 46:3199CrossRefGoogle Scholar
  7. 7.
    Kaewpirom S, Boonsang S (2006) Eur Polym J 42:1609CrossRefGoogle Scholar
  8. 8.
    Şolpan D, Torun M (2005) Colloid Surf A 268:12CrossRefGoogle Scholar
  9. 9.
    Kim SJ, Yoon SG, Lee SM (2003) Sens Actuator B 96:1CrossRefGoogle Scholar
  10. 10.
    Yang S, Aizenberg J (2005) Mater Today 8:40CrossRefGoogle Scholar
  11. 11.
    Flory PJ (1953) Principles of polymer chemistry. Cornel University Press, New YorkGoogle Scholar
  12. 12.
    Gayet JC, Fortier G (1996) J Control Release 38:177CrossRefGoogle Scholar
  13. 13.
    Bhattarai N, Ramay HR, Gunn J (2005) J Control Release 103:609CrossRefGoogle Scholar
  14. 14.
    Wu JH, Lin JM, Zhou M (2000) Macromol Rapid Commun 21:1032CrossRefGoogle Scholar
  15. 15.
    Lin JM, Wu JH, Yang Z (2001) Macromol Rapid Commun 22:422CrossRefGoogle Scholar
  16. 16.
    Lin JM, Tang QW, Wu JH (2007) React Funct Polym 67:489CrossRefGoogle Scholar
  17. 17.
    Wu JH, Wei YL, Lin JM (2003) Polymer 44:6513CrossRefGoogle Scholar
  18. 18.
    Tang QW, Lin JM, Wu JH (2007) Carbohydr Polym 67:332CrossRefGoogle Scholar
  19. 19.
    Tang QW, Wu JH, Lin JM (2008) e-Polymers 21:1Google Scholar
  20. 20.
    Arndt KF, Schmidt T, Reichelt R (2001) Polymer 42:6785CrossRefGoogle Scholar
  21. 21.
    Suzuki M, Hirasa O (1993) Adv Polym Sci 110:241CrossRefGoogle Scholar
  22. 22.
    Johansson HO, Magaldi FM, Feitosa E (2008) J Chromatogr A 1178:145CrossRefGoogle Scholar
  23. 23.
    Touitou E, Donbrow M (1983) Int J Pharm 15:13CrossRefGoogle Scholar
  24. 24.
    Li XY, Wu WH, Wang JQ (2006) Carbohydr Polym 66:473CrossRefGoogle Scholar
  25. 25.
    Enscore DJ, Hopfraberg HB, Stannett VT (1977) Polymer 18:793CrossRefGoogle Scholar
  26. 26.
    Crank J (1975) The mathematics of diffusion. Oxford University Press, LondonGoogle Scholar
  27. 27.
    Zhang XZ, Zhuo RX (2000) J Colloid Interface Sci 223:311CrossRefGoogle Scholar
  28. 28.
    Zhang XZ, Zhuo RX, Yang Y (2002) Biomaterials 23:1313CrossRefGoogle Scholar
  29. 29.
    Tang QW, Lin JM, Wu JH (2007) J Appl Polym Sci 104:735CrossRefGoogle Scholar
  30. 30.
    Ge HC, Pang W, Luo DK (2006) Carbohydr Polym 66:372CrossRefGoogle Scholar
  31. 31.
    Atkins PW (1986) Physical chemistry, 3rd edn. OUP, London, p 243Google Scholar
  32. 32.
    Mahdavinia GR, Pourjavadi A, Hosseinzadeh H (2004) Eur Polym J 40:1399CrossRefGoogle Scholar
  33. 33.
    Tang QW, Sun XM, Li QH, Lin JM, Wu JH (2009) J Mater Sci 44:726. doi: https://doi.org/10.1007/s10853-008-3173-1 CrossRefGoogle Scholar
  34. 34.
    Zimmermann H, Wählisch F, Baier C (2007) Biomaterials 28:1327CrossRefGoogle Scholar
  35. 35.
    Singh B, Chauhan GS, Bhatt SS (2006) Carbohydr Polym 64:50CrossRefGoogle Scholar
  36. 36.
    Chauhan GS, Singh B, Chauhan S (2005) Desalination 181:217CrossRefGoogle Scholar
  37. 37.
    Li N, Bai RB (2005) Sep Purif Technol 42:237CrossRefGoogle Scholar
  38. 38.
    Yan WL, Bai RB (2005) Water Res 39:688CrossRefGoogle Scholar
  39. 39.
    Ali AE, Shawky HA, Abd El Rehim HA (2003) Eur Polym J 39:2337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Qunwei Tang
    • 1
  • Xiaoming Sun
    • 1
  • Qinghua Li
    • 1
  • Jianming Lin
    • 1
  • Jihuai Wu
    • 1
    Email author
  1. 1.The Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Material Physical ChemistryHuaqiao UniversityQuanzhouChina

Personalised recommendations