Journal of Materials Science

, Volume 44, Issue 14, pp 3702–3711 | Cite as

The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer

  • O. Fenollar
  • L. Sanchez-Nacher
  • D. Garcia-Sanoguera
  • J. López
  • R. Balart


One of the most useful polymeric materials at industrial scale is plasticized polyvinyl chloride (P-PVC) or PVC plastisol. This is characterized by optimum balance among processing conditions, overall properties, cost, and versatility; however, it has some problems related to plasticizer migration (generally phthalates derivatives) with toxicity problems. As a consequence of the appearance of new regulations which restrict the use of phthalates, the study of new plasticizers with low toxicity and low migration has become a very interesting research field. In this study, the optimum curing conditions of vinyl plastisols with a natural-based epoxidized fatty acid ester as plasticizer have been investigated by the following mechanical properties: thermal behavior, color changes, solvent migration, and microstructure changes in terms of the curing conditions. This study was carried out with a plasticizer content of 70 phr (per hundred resin); different isothermal curing conditions ranging from 160 to 220 °C, and curing times in the 6–10 min range were used. The results revealed that the best curing conditions are 200 and 220 °C for curing times near to 14 and 10 min, respectively, which are similar to those used for other commonly used plasticizers.


Phthalate DEHP Plasticizer Absorption Particle Cohesion Plasticize Polyvinyl Chloride 



Authors thank microscopy services at UPV for their assistance in using SEM technique.


  1. 1.
    Biedermann-Brem S, Biedermann M, Fiselier K, Grob K (2005) Food Addit Contam 22:1274CrossRefGoogle Scholar
  2. 2.
    Jimenez A, Lopez J, Iannoni A, Kenny JM (2001) J Appl Polym Sci 81:1881CrossRefGoogle Scholar
  3. 3.
    Marcilla A, Garcia S, Garcia-Quesada JC (2008) Polym Test 27:221CrossRefGoogle Scholar
  4. 4.
    Shea KM (2003) Pediatrics 111:1467CrossRefGoogle Scholar
  5. 5.
    Wang Q, Storm BK (2005) Polym Test 24:290CrossRefGoogle Scholar
  6. 6.
    Directive (2005) 2005/84/EC of the European Parliament and of the Council of 14 December 2005; Published 27.12.2005 in the Official Journal of the European Union; L 344/40–L 344/43Google Scholar
  7. 7.
    Public Law (2008) 110–314—August 14, 2008 enacted by the Senate and House of Representatives of the United States of America, 3016–3077Google Scholar
  8. 8.
    Kawamura Y, Kanno S, Mutsuga M, Tanamoto K (2006) J Food Hyg Soc Jpn 47:243CrossRefGoogle Scholar
  9. 9.
    Pedersen GA, Jensen LK, Fankhauser A, Biedermann S, Petersen JH, Fabech B (2008) Food Addit Contam 25:503CrossRefGoogle Scholar
  10. 10.
    Banu D, El-Aghoury A, Feldman D (2006) J Appl Polym Sci 101:2732CrossRefGoogle Scholar
  11. 11.
    Gil N, Saska M, Negulescu I (2006) J Appl Polym Sci 102:1366CrossRefGoogle Scholar
  12. 12.
    Baltacioglu H, Balkose D (1999) J Appl Polym Sci 74:2488CrossRefGoogle Scholar
  13. 13.
    Benaniba MT, Belhaneche-Bensemra N, Gelbard G (2003) Polym Degrad Stab 82:245CrossRefGoogle Scholar
  14. 14.
    Lee JH, Park CW, Noh I (1995) Polymer (Korea) 19:543Google Scholar
  15. 15.
    Yousef EAA, Hussain AE, Shoeb ZE (2001) J Sci Ind Res 60:383Google Scholar
  16. 16.
    Rusling JF, Riser GR, Snook ME, Scott WE (1968) J Am Oil Chem Soc 45:760CrossRefGoogle Scholar
  17. 17.
    Gan LH, Ooi KS, Goh SH, Gan LM, Leong YC (1995) Eur Polym J 31:719CrossRefGoogle Scholar
  18. 18.
    Zhu J, Chandrashekhara K, Flanigan V, Kapila S (2004) J Appl Polym Sci 91:3513CrossRefGoogle Scholar
  19. 19.
    Bouchareb B, Benaniba MT (2008) J Appl Polym Sci 107:3442CrossRefGoogle Scholar
  20. 20.
    Starnes WH, Du B, Kim S, Zaikov VG, Ge XL, Culyba EK (2006) Thermochim Acta 442:78CrossRefGoogle Scholar
  21. 21.
    Wang GQ, Chen YT (1991) Polym Test 10:315CrossRefGoogle Scholar
  22. 22.
    Boussoum MO, Atek D, Belhaneche-Bensemra N (2006) Polym Degrad Stab 91:579CrossRefGoogle Scholar
  23. 23.
    Goto H, Saeki A, Nishikino H, Higaki Y, Iida T (1994) Kobunshi Ronbunshu 51:511CrossRefGoogle Scholar
  24. 24.
    Lopez J, Balart R, Jimenez A (2004) J Appl Polym Sci 91:538CrossRefGoogle Scholar
  25. 25.
    Nakajima N, Yavornitzky CM, Roche EJ, Harrell ER (1986) J Appl Polym Sci 32:3749CrossRefGoogle Scholar
  26. 26.
    Kwak SY (1995) J Appl Polym Sci 55:1683CrossRefGoogle Scholar
  27. 27.
    Garcia D, Balart R, Parres F, Lopez J (2007) J Mater Sci 42:10143. doi: CrossRefGoogle Scholar
  28. 28.
    Hashimoto K, Suga S, Wakayama Y, Funazukuri T (2008) J Mater Sci 43:2457. doi: CrossRefGoogle Scholar
  29. 29.
    Crespo JE, Balart R, Sanchez L, Lopez J (2007) J Appl Polym Sci 104:1215CrossRefGoogle Scholar
  30. 30.
    Garcia JC, Marcilla A (1998) Polymer 39:3507CrossRefGoogle Scholar
  31. 31.
    Marcilla A, Garcia JC (1997) Eur Polym J 33:349CrossRefGoogle Scholar
  32. 32.
    Marcilla A, Garcia JC (1997) Eur Polym J 33:357CrossRefGoogle Scholar
  33. 33.
    Jourdan JS, Owen DP (2008) J Vinyl Addit Technol 14:99CrossRefGoogle Scholar
  34. 34.
    JE Crespo JE (2005) PhD Thesis, Alcoy, Polytechnic University of Valencia, p 612Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • O. Fenollar
    • 1
  • L. Sanchez-Nacher
    • 1
  • D. Garcia-Sanoguera
    • 1
  • J. López
    • 1
  • R. Balart
    • 1
  1. 1.Materials Technology Institute (ITM)Polytechnic University of ValenciaAlcoySpain

Personalised recommendations