Advertisement

Journal of Materials Science

, Volume 44, Issue 14, pp 3687–3693 | Cite as

Spindlelike Y2O3:Eu3+ nanorod bundles: hydrothermal synthesis and photoluminescence properties

  • Shengliang ZhongEmail author
  • Shijin Wang
  • Huaping Xu
  • Haoqing Hou
  • Zubiao Wen
  • Ping Li
  • Shangping Wang
  • Rong Xu
Article

Abstract

Uniform spindlelike Y(OH)3 nanorod bundles were successfully prepared for the first time via a simple hydrothermal method at 200 °C for 12 h with the presence of Na2H2EDTA · 2H2O (EDTA). Scanning electron microscope (SEM) images show that the obtained Y(OH)3 spindlelike nanorod bundles have a length of about 11 μm and a diameter of about 2 μm in the middle part. The nanorod bundles are composed of numerous nanorods, and all these nanorods are orientationally aligned and grow uniformly along the bundles. The individual nanorod is with typical width of about 100 nm, thickness of about 40 nm, and length longer than 1 μm. The effects of reaction temperature, reaction time, and the concentration of NaOH and EDTA on the sizes and morphologies of the products have been investigated. The possible formation mechanism of the nanorod bundles was suggested. Spindlelike Y2O3 nanorod bundles were obtained after thermal treatment of the as-obtained Y(OH)3 nanorod bundles at 700 °C for 4 h. X-ray powder diffraction (XRD) results demonstrate that the as-prepared Y(OH)3 and Y2O3 are attributed to hexagonal phase and cubic phase, respectively. Eu3+ doped Y2O3 nanorod bundles were also prepared and their photoluminescence (PL) properties were investigated.

Keywords

Y2O3 NaYF4 EDTA Concentration Facile Hydrothermal Method Yttrium Hydroxide 

Notes

Acknowledgements

S. L. Zhong acknowledges the funding support from Projects under Scientific and Technological Planning of Education Office of Jiangxi Province.

References

  1. 1.
    Adachi GY, Imanaka N (1998) Chem Rev 98:1479CrossRefGoogle Scholar
  2. 2.
    Wang X, Li YD (2002) Angew Chem Int Ed 41:4790CrossRefGoogle Scholar
  3. 3.
    Hasegawa Y, Thongchant S, Wada Y, Tanaka H, Kawai T, Sakata T, Mori H, Yanagida S (2002) Angew Chem Int Ed 41:2073CrossRefGoogle Scholar
  4. 4.
    Kim BN, Hiraga K, Morita K, Sakka Y (2001) Nature 413:288CrossRefGoogle Scholar
  5. 5.
    Rosenflanz A, Frey M, Endres B, Anderson T, Richards E, Schardt C (2004) Nature 430:761CrossRefGoogle Scholar
  6. 6.
    Lin TS, Sobotka LG, Froncisz W (1988) Nature 33:321Google Scholar
  7. 7.
    Edwin Suresh Raj AM, Maria Magdalane C, Nagaraja KS (2002) Phys Status Solid A 191:230CrossRefGoogle Scholar
  8. 8.
    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H (2004) Nature 432:488CrossRefGoogle Scholar
  9. 9.
    Silver J, Martinez-Rubio MI, Ireland TG, Fern GR, Withnall R (2001) J Phys Chem B 105:948CrossRefGoogle Scholar
  10. 10.
    Bolchouchine VA, Goldburt ET, Levonovitch BN, Litchmanova VN, Sochtine NP (2000) J Lumin 87–89:1277CrossRefGoogle Scholar
  11. 11.
    Wang X, Sun XM, Yu DP, Zou BS, Li YD (2003) Adv Mater 15:1442CrossRefGoogle Scholar
  12. 12.
    Fang YP, Xu AW, You LP, Song RQ, Yu JC, Zhang HX, Li Q, Liu HQ (2003) Adv Funct Mater 13:955CrossRefGoogle Scholar
  13. 13.
    Li W, Wang X, Li Y (2004) Chem Commun 2:164CrossRefGoogle Scholar
  14. 14.
    Wu XC, Tao YR, Gao F, Dong L, Hu Z (2005) J Cryst Growth 277:643CrossRefGoogle Scholar
  15. 15.
    Li Q, Feng C, Jiao Q, Guo L, Liu C, Xu HB (2004) Phys Status Solidi A 201:3055CrossRefGoogle Scholar
  16. 16.
    Xue B, Song HW, Yu LX, Yang LM, Liu ZX, Pan GH, Lu SZ, Ren XG, Lei YH, Fan LB (2005) J Phys Chem B 109:15236CrossRefGoogle Scholar
  17. 17.
    Wan JX, Wang ZH, Chen XY, Mu L, Qian YT (2005) J Cryst Growth 284:538CrossRefGoogle Scholar
  18. 18.
    Xu ZX, Hong ZL, Zhao QC, Peng LX, Zhang PY (2006) J Rare Earths 24:111CrossRefGoogle Scholar
  19. 19.
    Han M, Shi NE, Zhang WL, Li BJ, Sun JH, Chen KJ, Zhu JM, Wang X, Xu Z (2008) Eur Chem J 14:1615CrossRefGoogle Scholar
  20. 20.
    He Y, Tian Y, Zhu Y (2003) Chem Lett 32:862CrossRefGoogle Scholar
  21. 21.
    Si R, Zhang YW, You LP, Yan CH (2005) Angew Chem Int Ed 44:3256CrossRefGoogle Scholar
  22. 22.
    Zhang J, Liu ZG, Lin J, Fang JY (2005) Cryst Growth Des 5:1527CrossRefGoogle Scholar
  23. 23.
    Hu CQ, Gao ZH (2006) J Mater Sci 41:6126. doi: https://doi.org/10.1007/s10853-006-0450-8 CrossRefGoogle Scholar
  24. 24.
    Yi GS, Lu HC, Zhao SY, Yue G, Wang WJ, Chen DP, Guo LH (2004) Nano Lett 4:2191CrossRefGoogle Scholar
  25. 25.
    Yang J, Quan ZW, Kong DY, Liu XM, Lin J (2007) Cryst Growth Des 7:730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shengliang Zhong
    • 1
    Email author
  • Shijin Wang
    • 1
  • Huaping Xu
    • 2
  • Haoqing Hou
    • 1
  • Zubiao Wen
    • 1
  • Ping Li
    • 1
  • Shangping Wang
    • 1
  • Rong Xu
    • 1
  1. 1.College of Chemistry and Chemical EngineeringJiangxi Normal UniversityNanchangPeople’s Republic of China
  2. 2.Gannan Medical UniversityGanzhouPeople’s Republic of China

Personalised recommendations