Advertisement

Journal of Materials Science

, Volume 44, Issue 14, pp 3674–3681 | Cite as

Long-term performance of polyetheretherketone-based polymer electrolyte membrane in fuel cells at 95 °C

  • Jinhua ChenEmail author
  • Maolin Zhai
  • Masaharu Asano
  • Ling Huang
  • Yasunari Maekawa
Article

Abstract

A poly(styrenesulfonic acid)-grafted polyetheretherketone (ssPEEK) polymer electrolyte membrane was developed by radiation grafting of ethyl styrenesulfonate (ETSS) onto PEEK film and subsequent hydrolysis. The long-term durability of the ssPEEK electrolyte membrane was tested in a fuel cell at 95 °C, during which it exhibited a lifetime of more than 1000 h and a slow voltage degradation of 18 μV h−1 at a current density of 0.3 A cm−2. After durability test, the catalyst layers were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM); the polymer electrolyte membrane was investigated by determining the change in thickness, proton conductivity, and amounts of sulfonic acid groups. It was concluded that the degradation of performance in fuel cell was due to the thermal aging of the hydrocarbon polymer electrolyte membrane being exposed to the electrochemical environment with the pure oxygen acting as the oxidant gas, as well as the Nafion-based catalyst layer being subjected to high temperature for a long time, where the Pt catalyst was aggregated and sintered.

Keywords

Fuel Cell Proton Conductivity Catalyst Layer Polymer Electrolyte Membrane Sulfonic Acid Group 

References

  1. 1.
    Savadogo O (2004) J Power Sources 127:135CrossRefGoogle Scholar
  2. 2.
    Li Q, He R, Jensen JO, Bjerrum J (2003) Chem Mater 15:4896CrossRefGoogle Scholar
  3. 3.
    Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida WA (2008) J Power Sources 184:104CrossRefGoogle Scholar
  4. 4.
    Bi W, Fuller TF (2008) J Electrochem Soc 155:B215CrossRefGoogle Scholar
  5. 5.
    Lakshmanan B, Huang W, Olmeijer D, Weidner JW (2003) Electrochem Solid State Lett 6:A282CrossRefGoogle Scholar
  6. 6.
    Endoh E (2008) ECS Trans 12:41CrossRefGoogle Scholar
  7. 7.
    Schmidt T, Baurmeister J (2008) J Power Sources 176:428CrossRefGoogle Scholar
  8. 8.
    Roziere J, Jones DJ (2003) Annu Rev Mater Res 33:503CrossRefGoogle Scholar
  9. 9.
    Zhang L, Mukerjee S (2006) J Electrochem Soc 153:A1062CrossRefGoogle Scholar
  10. 10.
    Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M (2006) J Am Chem Soc 128:1762CrossRefGoogle Scholar
  11. 11.
    Sethuraman VA, Weidner JW, Haug AT, Protsailo LV (2008) J Electrochem Soc 155:B119CrossRefGoogle Scholar
  12. 12.
    Bauer B, Jones DJ, Rozière J, Tchicaya L, Alberti G, Casciola M, Massinelli L, Peraio A, Besse S, Ramunni E (2000) J New Mater Electrochem Syst 3:93Google Scholar
  13. 13.
    Wang F, Hickner M, Kim Y, Zawodzinski TA, McGrath JE (2002) J Membr Sci 197:231CrossRefGoogle Scholar
  14. 14.
    Li W, Fu Y, Manthiram A, Guiver MD (2009) J Electrochem Soc 156:B258CrossRefGoogle Scholar
  15. 15.
    Chen J, Maekawa Y, Asano M, Yoshida M (2007) Polymer 48:6002CrossRefGoogle Scholar
  16. 16.
    Chen J, Asano M, Maekawa Y, Yoshida M (2008) J Membr Sci 319:1CrossRefGoogle Scholar
  17. 17.
    Chen J, Asano M, Yamaki T, Yoshida M (2006) J Mater Sci 41:1289. doi: https://doi.org/10.1007/s10853-005-2573-8 CrossRefGoogle Scholar
  18. 18.
    Septiani U, Chen J, Asano M, Maekawa Y, Yoshida M, Kubota H (2007) J Mater Sci 42:1330. doi: https://doi.org/10.1007/s10853-006-1196-z CrossRefGoogle Scholar
  19. 19.
    Prater K (1990) J Power Source 29:239CrossRefGoogle Scholar
  20. 20.
    Yu J, Yi B, Xing D, Liu F, Chao Z, Fu Y, Zhang H (2003) Phys Chem Chem Phys 5:611CrossRefGoogle Scholar
  21. 21.
    Li J, Matsuura A, Kakigi T, Miura T, Oshima A, Washio M (2006) J Power Sources 161:99CrossRefGoogle Scholar
  22. 22.
    Büchi FN, Gupta B, Haas O, Scherer GG (1995) Electrochim Acta 40:345CrossRefGoogle Scholar
  23. 23.
    Gubler L, Kuhn H, Schmidt TJ, Scherer GG, Brack HP, Simbeck K (2004) Fuel Cells 4:196CrossRefGoogle Scholar
  24. 24.
    Kim BN, Lee DH, Han DH (2008) J Electrochem Soc 155:B680CrossRefGoogle Scholar
  25. 25.
    Chen J, Asano M, Yamaki T, Yoshida M (2006) J Membr Sci 269:194CrossRefGoogle Scholar
  26. 26.
    Chen J, Asano M, Yamaki T, Yoshida M (2006) J Power Sources 158:69CrossRefGoogle Scholar
  27. 27.
    Ramani V, Swier S, Shaw MT, Weiss RA, Kunz HR, Fenton JM (2008) J Electrochem Soc 155:B532CrossRefGoogle Scholar
  28. 28.
    Shao Y, Yin G, Wang Z, Gao Y (2007) J Power Sources 167:235CrossRefGoogle Scholar
  29. 29.
    Aricò S, Stassi A, Modica E, Ornelas R, Gatto I, Passalacqua E, Antonucci V (2008) J Power Sources 178:525CrossRefGoogle Scholar
  30. 30.
    Franco A, Gerard M (2008) J Electrochem Soc 155:B367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jinhua Chen
    • 1
    Email author
  • Maolin Zhai
    • 1
    • 2
  • Masaharu Asano
    • 1
  • Ling Huang
    • 2
  • Yasunari Maekawa
    • 1
  1. 1.Environment and Industrial Materials Research DivisionJapan Atomic Energy Agency (JAEA)TakasakiJapan
  2. 2.College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations