Journal of Materials Science

, Volume 44, Issue 14, pp 3662–3673 | Cite as

Synthesis, characterization and thermal analysis of Fe-doped boehmite nanofibres and nanosheets

  • Yanyan Zhao
  • Jing Yang
  • Ray L. FrostEmail author
  • János Kristóf
  • Erzsébet Horváth


It is important that one should have knowledge of the thermal stability of synthesized nanomaterials. In this research, thermal analyses of both dynamic and controlled rate thermal analysis (CRTA) combined with infrared emission spectroscopy have been used to determine the thermal stability of iron-doped boehmite. Iron-doped boehmite nanofibres with varying iron contents have been prepared at low temperature using hydrothermal treatment in the presence of non-ionic poly (ethylene oxide) surfactant. The TEM images show that the resulting nanostructures are predominantly nanofibres when Fe doping is less than 5%; in contrast, nanosheets are the dominant for 10% Fe-doped boehmite. No nanofibre was observed in the case of 20% Fe-doped boehmite, instead, nanotubes, nanosheets and iron-rich nanoparticles were formed. Both dynamic thermal analysis and CRTA show that Fe-doped boehmite nanomaterials dehydroxylate at higher temperatures than pure boehmite nanofibres. In general, the higher the doped Fe %, the higher the dehydroxylation temperature. The dehydroxylation temperature indicated in the infrared emission spectroscopy of doped boehmite nanomaterials is in harmony with those in other thermal analysis studies.


Hydrothermal Treatment Boehmite Mass Loss Step Thermal Analysis Study Control Rate Thermal Analysis 



The financial and infrastructure support of the Queensland University of Technology Inorganic Materials Research Program of the School of Physical and Chemical Sciences is gratefully acknowledged. The authors thank The Australian Research Council (ARC) for funding the Thermal Analysis facility through a LIEF grant. One of the authors (YZ)owes his gratitude for a Queensland University of Technology international doctoral scholarship (QIDS).


  1. 1.
    Fendler JH, Meldrum FC (1995) Adv Mater (Weinheim, Germany) 7:607CrossRefGoogle Scholar
  2. 2.
    Lakshmi BB, Patrissi CJ, Martin CR (1997) Chem Mater 9:2544CrossRefGoogle Scholar
  3. 3.
    Sun Y, Xia Y (2002) Nature 298:2176Google Scholar
  4. 4.
    Zhao Y, Frost RL, Martens WN, Zhu HY (2007) J Therm Anal Calorim 90:755CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Frost RL, Martens WN (2007) J Phys Chem C 111:16290CrossRefGoogle Scholar
  6. 6.
    Zhao Y, Frost RL, Martens WN, Zhu HY (2007) Langmuir 23:9850CrossRefGoogle Scholar
  7. 7.
    Zhao Y, Frost RL, Martens WN (2007) J Phys Chem C 111:5313CrossRefGoogle Scholar
  8. 8.
    Zhao Y, Martens WN, Bostrom TE, Zhu HY, Frost RL (2007) Langmuir 23:2110CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Frost RL, Yang J, Martens WN (2008) J Phys Chem C 112:3568CrossRefGoogle Scholar
  10. 10.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Nature 415:617CrossRefGoogle Scholar
  11. 11.
    Le Loarer J-L, Nussbaum H, Bortzmeyer D (1998) Alumina extrudates, methods for preparing and use as catalysts or catalyst supports. Rhodia Chimie, France. Application: WO, p 44Google Scholar
  12. 12.
    Burkat VS, Dudorova VS, Smola VS, Chagina TS (1985) Light metals. TMS, Warrendale, PA, pp 1443–1448Google Scholar
  13. 13.
    Nedez C, Boitiaux J-P, Cameron CJ, Didillon B (1996) Langmuir 12:3927CrossRefGoogle Scholar
  14. 14.
    Chen Y, Jin L, Xie Y (1998) J Sol-Gel Sci Technol 13:735CrossRefGoogle Scholar
  15. 15.
    Xue DS, Huang YL, Ma Y, Zhou PH, Niu ZP, Li FS, Job R, Fahrner WR (2003) J Mater Sci Lett 22:1817CrossRefGoogle Scholar
  16. 16.
    Philipse AP, Nechifor A-M, Patmamanoharan C (1994) Langmuir 10:4451CrossRefGoogle Scholar
  17. 17.
    Okada K, Tanaka A, Hayashi S, Daimon K, Otsuka N (1994) J Mater Res 9:1709CrossRefGoogle Scholar
  18. 18.
    Ananthakumar S, Raja V, Warrier KGK (2000) Mater Lett 43:174CrossRefGoogle Scholar
  19. 19.
    van Bruggen MPB (1998) Langmuir 14:2245CrossRefGoogle Scholar
  20. 20.
    Bugosh J (1961) J Phys Chem 65:1789CrossRefGoogle Scholar
  21. 21.
    Kaya C, He JY, Gu X, Butler EG (2002) Microporous Mesoporous Mater 54:37CrossRefGoogle Scholar
  22. 22.
    Kuang D, Fang Y, Liu H, Frommen C, Fenske D (2003) J Mater Chem 13:660CrossRefGoogle Scholar
  23. 23.
    Zhu HY, Gao XP, Song DY, Bai YQ, Ringer SP, Gao Z, Xi YX, Martens W, Riches JD, Frost RL (2004) J Phys Chem B 108:4245CrossRefGoogle Scholar
  24. 24.
    Zhu HY, Riches JD, Barry JC (2002) Chem Mater 14:2086CrossRefGoogle Scholar
  25. 25.
    Wood L, Lindley J (1980) Liquid phase chemical process with separation of catalyst particles by magnetic flocculation. Imperial Chemical Industries Ltd., UK. Application: EP, p 21Google Scholar
  26. 26.
    Teunissen W, Bol AA, Geus JW (1999) Catal Today 48:329CrossRefGoogle Scholar
  27. 27.
    Zhu HY, Gao XP, Song DY, Bai YQ, Ringer SP, Gao Z, Xi YX, Martens W, Riches JD, Frost RL (2004) J Phys Chem B 108:4245CrossRefGoogle Scholar
  28. 28.
    Gao P, Xie Y, Chen Y, Ye L, Guo Q (2005) J Cryst Growth 285:555CrossRefGoogle Scholar
  29. 29.
    Shen SC, Chen Q, Chow PS, Tan GH, Zeng XT, Wang Z, Tan RBH (2007) J Phys Chem C 111:700CrossRefGoogle Scholar
  30. 30.
    Frost RL, Vassallo AM (1996) Clays Clay Miner 44:635CrossRefGoogle Scholar
  31. 31.
    Frost RL, Vassallo AM (1997) Mikrochim Acta Suppl 14:789Google Scholar
  32. 32.
    Frost RL, Kloprogge JT (1999) Spectrochim Acta A 55A:2195CrossRefGoogle Scholar
  33. 33.
    Frost RL, Weier ML (2003) Thermochim Acta 406:221CrossRefGoogle Scholar
  34. 34.
    Zhao Y, Frost RL (2008) J Colloid Interf Sci 326:289CrossRefGoogle Scholar
  35. 35.
    Cummins PG, Hayter JB, Penfold J, Staples E (1987) Chem Phys Lett 138:436CrossRefGoogle Scholar
  36. 36.
    Cummins PG, Staples E, Penfold J, Heenan RK (1989) Langmuir 5:1195CrossRefGoogle Scholar
  37. 37.
    Kahlweit M (1970) Physical chemistry. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yanyan Zhao
    • 1
  • Jing Yang
    • 1
  • Ray L. Frost
    • 1
    Email author
  • János Kristóf
    • 2
  • Erzsébet Horváth
    • 3
  1. 1.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.Department of Analytical ChemistryUniversity of PannoniaVeszprémHungary
  3. 3.Department of Environmental Engineering and Chemical TechnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations