Advertisement

Journal of Materials Science

, Volume 44, Issue 14, pp 3652–3661 | Cite as

Mechanical behavior of entangled fibers and entangled cross-linked fibers during compression

  • Laurent MezeixEmail author
  • Christophe Bouvet
  • Julitte Huez
  • Dominique Poquillon
Article

Abstract

Entangled fibrous materials have been manufactured from different fibers: metallic fibers, glass fibers, and carbon fibers. Specimens have been produced with and without cross-links between fibers. Cross-links have been achieved using epoxy spraying. The scope of this article is to analyze the mechanical behavior of these materials and to compare it with available models. The first part of this article deals with entangled fibrous materials without cross-link between fibers. Compression tests are detailed and test reproducibility is checked. In the second part, compression tests were performed on materials manufactured with cross-linked fibers. The specific mechanical behavior obtained is discussed.

Keywords

Carbon Fiber Compression Test Glass Fiber Fiber Diameter Core Material 

Notes

Acknowledgements

Financial support for this work was obtained thanks to a BQR (Bonus Qualité Recherche) of the University of Toulouse and thanks to funding provided by the region Midi-Pyrénées (CEFICAS project).

References

  1. 1.
    Ducheyne P, Aernoudt E, Meester P (1978) J Mater Sci 13(12):2650. doi: https://doi.org/10.1007/BF00552695 CrossRefGoogle Scholar
  2. 2.
    Clyne TW, Mason JF (1987) Metal Trans A 18(8):1519CrossRefGoogle Scholar
  3. 3.
    Delannay F, Clyne TW (1999) In: Proceedings of the 1st international conference on metal foams and porous metal structures (MetFoam’99), Bremen, Germany, 14–16 Jun 1999Google Scholar
  4. 4.
    Yamada Y, Wen CE, Chino Y, Shimojima K, Hosokawa H, Mabuchi M (2003) Mater Sci Forum 419:1013CrossRefGoogle Scholar
  5. 5.
    Markaki AE, Gergely V, Cockburn A, Clyne TW (2003) Comput Sci Technol 63(16):2345CrossRefGoogle Scholar
  6. 6.
    Woesz A, Stampfl J, Fratzl P (2004) Adv Eng Mater 6(3):134CrossRefGoogle Scholar
  7. 7.
    Delince M, Delannay F (2004) Acta Mater 52(4):1013CrossRefGoogle Scholar
  8. 8.
    Golosnoy LO, Cockburn A, Clyne TW (2008) Adv Eng Mater 10(3):210CrossRefGoogle Scholar
  9. 9.
    Zhang BM, Zhao SY, He XD (2008) J Quant Spectrosc Radiat Transf 109(7):1309CrossRefGoogle Scholar
  10. 10.
    Gustavsson R (1998) Patent WO 98/01295, 15th Jan 1998, AB VolvoGoogle Scholar
  11. 11.
    Markaki AE, Clyne TW (2001) US patent 10/000117, Cambridge UniversityGoogle Scholar
  12. 12.
    Markaki AE, Clyne TW (2003) Acta Mater 51(5):1341CrossRefGoogle Scholar
  13. 13.
    Markaki AE, Clyne TW (2003) Acta Mater 51(5):1351CrossRefGoogle Scholar
  14. 14.
    Dean J et al (2008) In: Ferreira (ed) Proceedings of the 8th international conference on sandwich structure (ICCS8), Portugal, p 199Google Scholar
  15. 15.
    Zhou D, Stronge WJ (2005) Int J Mech Sci 47(4–5):775CrossRefGoogle Scholar
  16. 16.
    Mezeix L, Bouvet C, Castanié B, Poquillon D (2008) In: Ferreira (ed) Proceedings of the 8th international conference on sandwich structure (ICCS8), Portugal, p 798Google Scholar
  17. 17.
    Castéra P (2002) In: Proceedings of matériaux 2002, ISBN 2-914279-08-6Google Scholar
  18. 18.
    Haeffelin JM, Bos F, Castéra P (2002) In: Proceedings of matériaux 2002, ISBN 2-914279-08-6Google Scholar
  19. 19.
    Baudequin M (2002) PhD Thesis, Université Pierre et Marie Curie Paris VIGoogle Scholar
  20. 20.
    Poquillon D, Viguier B, Andrieu E (2005) J Mater Sci 40(22):5963. doi: https://doi.org/10.1007/s10853-005-5070-1 CrossRefGoogle Scholar
  21. 21.
    Clyne TW, Markaki AE, Tan JC (2005) Compos Sci Technol 65(15–16):2492CrossRefGoogle Scholar
  22. 22.
    van-Wyk CM (1946) J Text Inst 37:285CrossRefGoogle Scholar
  23. 23.
    Toll S (1998) Polym Eng Sci 38:1337CrossRefGoogle Scholar
  24. 24.
    Durville D (2005) J Mater Sci 40(22):5941. doi: https://doi.org/10.1007/s10853-005-5061-2 CrossRefGoogle Scholar
  25. 25.
    Barbier C, Dendievel R, Rodney D (2008) Numerical study of 3-D compressions of entangled materials. Comput Mater Sci. doi: https://doi.org/10.1016/j.commatsci.2008.06.003 CrossRefGoogle Scholar
  26. 26.
    Barbier C, Dendievel R, Rodney D (2008) PhD Thesis, Institut National Polytechnique de GrenobleGoogle Scholar
  27. 27.
    Mezeix L (2007) Material Science Master’s degree, Université de ToulouseGoogle Scholar
  28. 28.
    Margueritat-Regenet C (2002) PhD Thesis, Ecole National Supérieure des Mines de ParisGoogle Scholar
  29. 29.
    Parkhouse JG, Kelly A (1995) Proc R Soc A 451:737CrossRefGoogle Scholar
  30. 30.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. 31.
    Batchelor WJ, He J, Sampson WW (2006) J Mater Sci 41(24):8377. doi: https://doi.org/10.1007/s10853-006-0889-7 CrossRefGoogle Scholar
  32. 32.
    He J, Batchelor WJ, Johnston RE (2007) J Mater Sci 42(2):522. doi: https://doi.org/10.1007/s10853-006-1146-9 CrossRefGoogle Scholar
  33. 33.
    Dodson CTJ (1996) Tappi J 79(9):211Google Scholar
  34. 34.
    Phillipse AP (1996) Langmuir 12(5):1127CrossRefGoogle Scholar
  35. 35.
    Markaki AE, Clyne TW (2004) Biomaterials 25(19):4805CrossRefGoogle Scholar
  36. 36.
    Markaki AE, Clyne TW (2005) Acta Mater 53(3):877CrossRefGoogle Scholar
  37. 37.
    Zhu et al (1995) Chem Eng Sci 50(22):3557CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Laurent Mezeix
    • 1
    • 2
    Email author
  • Christophe Bouvet
    • 2
  • Julitte Huez
    • 1
  • Dominique Poquillon
    • 1
  1. 1.Université de Toulouse, CIRIMAT, INPT-ENSIACETToulouseFrance
  2. 2.Université de Toulouse, UPS, LGMTToulouse CedexFrance

Personalised recommendations