Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3566–3573 | Cite as

Novel poly(aryl ether)s containing benzimidazole pendants derived from 1,4-bis(2-benzimidazolyl)-2,5-difluorobenzene

  • Xiao-Song Huang
  • Yan-Gen Huang
  • Feng-Ling QingEmail author
Article

Abstract

A new difluoride monomer bilaterally substituted with rigid benzimidazole groups was synthesized efficiently. A series of new poly(aryl ether)s (PAEs) containing benzimidazole pendants were prepared from the novel difluoride monomer with various commercially available aromatic bisphenols using nucleophilic aromatic substitution reaction. All the PAEs show high glass transition temperatures (Tg > 205 °C), excellent thermal stability (Td > 420 °C), and good solubility in common organic solvents.

Keywords

Differential Scanning Calorimetry Benzimidazole Aryl Ether Excellent Thermal Stability High Glass Transition Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We are grateful to the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0526) and Shanghai Municipal Scientific Committee (08JC1400400) for the financial support.

Supplementary material

10853_2009_3482_MOESM1_ESM.doc (387 kb)
DOC 387 kb

References

  1. 1.
    Hergenrother PM, Connell JW (1994) Adv Polym Sci 117:67CrossRefGoogle Scholar
  2. 2.
    Dutta PK, Banerjee S, Maiti S (1996) In: Cheremisinoff NP (ed) Handbook of engineering polymeric materials. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Banerjee S, Maier G, Burger M (1999) Macromolecules 32:4279CrossRefGoogle Scholar
  4. 4.
    Qi Y, Ding J, Day M, Jiang J, Callender CL (2005) Chem Mater 17:676CrossRefGoogle Scholar
  5. 5.
    Chikashige Y, Chikyu Y, Miyatake K (2005) Macromolecules 38:7121CrossRefGoogle Scholar
  6. 6.
    Banerjee S, Maier G (1999) Chem Mater 11:2179CrossRefGoogle Scholar
  7. 7.
    Heddck JL (1991) Polym Bull 25:543CrossRefGoogle Scholar
  8. 8.
    Lu JP, Miyatake K, Hlil AR, Hay AS (2001) Macromolecules 34:5860CrossRefGoogle Scholar
  9. 9.
    Hilborn JG, Labadie JW, Hedrick JL (1990) Macromolecules 23:2854CrossRefGoogle Scholar
  10. 10.
    Maier G, Hecht R (1995) Macromolecules 28:7558CrossRefGoogle Scholar
  11. 11.
    Connell JW, Hereenrother PM (1989) Polym Mater Sci Eng 60:527Google Scholar
  12. 12.
    Hedrick JL, Labadie JW (1988) Macromolecules 21:1883CrossRefGoogle Scholar
  13. 13.
    Foster RT, Marvel CS (1965) J Polym Sci Part A Polym Chem 3:417Google Scholar
  14. 14.
    Chen CC, Wang LF, Wang JJ, Hsu TC (2002) J Mater Sci 37:4109. doi: https://doi.org/10.1023/A:1020079617880 CrossRefGoogle Scholar
  15. 15.
    Kim TH, Kim SK, Lim TW, Lee JC (2008) J Membr Sci 323:362CrossRefGoogle Scholar
  16. 16.
    Hamciuc C, Hamciuc E, Bruma M, Klapper M, Pakula T, Demeter A (2001) Polymer 42:5955CrossRefGoogle Scholar
  17. 17.
    Wright JB (1951) Chem Rev 48:397CrossRefGoogle Scholar
  18. 18.
    Addision AW, Rao TN, Wahlgren CG (1983) J Heterocycl Chem 20:1481CrossRefGoogle Scholar
  19. 19.
    Huang XS, Qing FL (2008) J Fluorine Chem 129:1076CrossRefGoogle Scholar
  20. 20.
    Person D, Cassidy PE, Fitch JW (1996) React Funct Polym 30:229CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Xiao-Song Huang
    • 1
  • Yan-Gen Huang
    • 1
  • Feng-Ling Qing
    • 1
    • 2
    Email author
  1. 1.College of Chemistry, Chemical Engineering and Biotechnology, and State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of ScienceShanghaiPeople’s Republic of China

Personalised recommendations