Journal of Materials Science

, Volume 44, Issue 13, pp 3561–3565 | Cite as

Nondestructive evaluation of flow properties in thermally aged Cr–Mo–V steel using instrumented indentation tests

  • J.-Y. Kim
  • J.-J. Lee
  • K.-W. Lee
  • D. KwonEmail author


Instrumented indentation technique has been utilized to assess the flow properties in X20CrMoV12.1 steel, widely used in power generation facilities, at various heat treatment stages simulating thermal aging during the service. The steel samples were heat treated at 600 and 650 °C for 1–2,000 h and flow properties were evaluated at various heating temperature and times by instrumented indentation tests using spherical indenter. Microstructure evolution after various heat treatments has been investigated to correlate the degradation of flow properties with the microstructure evolution due to thermal aging. We show that the degradation in flow properties in the steel sample can be described by Larson–Miller parameter analysis.


Yield Strength Ultimate Tensile Strength Flow Property Thermal Power Plant Thermal Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Marahleh G, Kheder ARI, Hamad HF (2006) Mater Sci Eng A 433:305CrossRefGoogle Scholar
  2. 2.
    Masuyama F (2007) Int J Press Ves Pip 84:53CrossRefGoogle Scholar
  3. 3.
    Hur SK, Hong KT, Doh JM (1994) Bull Korean Inst Met Mater 7:356Google Scholar
  4. 4.
    Mathew MD, Bhanu Sankara Rao K, Mannan SL, Paknikar K, Singh R (1997) Key Eng Mater 171–174:537Google Scholar
  5. 5.
    Larson FR, Miller J (1952) Trans ASME 74:765Google Scholar
  6. 6.
    Zhou Y, Devarajan B, Murty KL (2004) Nucl Eng Des 228:3CrossRefGoogle Scholar
  7. 7.
    Chellapandi P, Srinivasan R, Chetal SC, Raj B (2006) Int J Press Ves Pip 83:556CrossRefGoogle Scholar
  8. 8.
    Viswanathan R (1989) Damage mechanism and life assessment of high temperature components. ASM International, Metals Park, OHGoogle Scholar
  9. 9.
    Wheeler F et al (1992) Demonstration of life assessment techniques for boiler superheater and reheater parts. Electric Power Research Institute Report, Palo Alto, CAGoogle Scholar
  10. 10.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  11. 11.
    Oliver WC, Pharr GM (2004) J Mater Res 19:3CrossRefGoogle Scholar
  12. 12.
    Kim JY, Lee BW, Read DT, Kwon D (2005) Scr Mater 52:353CrossRefGoogle Scholar
  13. 13.
    Kim JY, Lee JS, Lee KW, Kim KH, Kwon D (2006) Key Eng Mater 326–328:487CrossRefGoogle Scholar
  14. 14.
    Kim JY, Lee JJ, Lee YH, Jang JI, Kwon D (2006) J Mater Res 21:2975CrossRefGoogle Scholar
  15. 15.
    Kim JY, Kang SK, Lee JJ, Jang JI, Lee YH, Kwon D (2007) Acta Mater 55:3555CrossRefGoogle Scholar
  16. 16.
    Dowling NE (1993) Mechanical behavior of materials. Prentice Hall, Englewood CliffsGoogle Scholar
  17. 17.
    Kim JY, Lee KW, Lee JS, Kwon D (2006) Surf Coat Technol 201:4278CrossRefGoogle Scholar
  18. 18.
    DIN 17175-79 (1979) Seamless steel tubes for elevated temperaturesGoogle Scholar
  19. 19.
    Ahn JH, Kwon D (2001) J Mater Res 16:3170CrossRefGoogle Scholar
  20. 20.
    Dieter GE (1988) Mechanical metallurgy. McGraw-Hill, SingaporeGoogle Scholar
  21. 21.
    Anderson TL (1995) Fracture mechanics. CRC Press, FLGoogle Scholar
  22. 22.
    Hu ZF, Yang ZG (2004) Mater Sci Eng A 383:224CrossRefGoogle Scholar
  23. 23.
    Kostka A, Tak KG, Hellmig RJ, Estrin Y, Eggeler G (2007) Acta Mater 55:539CrossRefGoogle Scholar
  24. 24.
    Seok CS, Koo JM (2005) Mater Sci Eng A 395:141CrossRefGoogle Scholar
  25. 25.
    Jang JI, Choi Y, Lee YH, Kwon D (2005) Mater Sci Eng A 395:295CrossRefGoogle Scholar
  26. 26.
    Shoji T (1994) Time-dependent degradation and life-time prediction. Realize Inc., TokyoGoogle Scholar
  27. 27.
    Ray AK, Tiwari YN, Sinha RK, Chaudhuri S, Singh R (2000) Eng Fail Anal 7:359CrossRefGoogle Scholar
  28. 28.
    ASME B&PV Part A (2004) Specification for seamless ferritic and austenitic alloy-steel boiler, superheater and heat-exchanger tubesGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Corporate R&D DivisionHyundai Kia MotorsGyeonggi-DoKorea
  3. 3.Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations