Journal of Materials Science

, Volume 44, Issue 13, pp 3533–3541 | Cite as

Study of impregnation of poly(l-lactide-ran-ε-caprolactone) copolymers with useful compounds in supercritical carbon dioxide

  • Chikara TsutsumiEmail author
  • Jun Sakafuji
  • Mai Okada
  • Kazuyuki Oro
  • Kazuaki Hata


Outstanding controlled release materials were developed using statistically random copolymers of l-lactide (l-LA) with ε-caprolactone (CL) using Sn(oct)2 as a catalyst at 150 °C for 24 h without solvent. Preparation of novel controlled release materials was carried out using useful organic compounds with low boiling points and synthetic random copolymers composed of l-LA and CL as base materials under supercritical carbon dioxide (scCO2). Low-boiling-point compounds such as d-limonene, hinokitiol, and trans-2-hexenal were used. In impregnation experiments using scCO2, the amounts of low-boiling-point compounds increased with an increase in l-LA content. When enzymatic degradation of poly(l-LA-ran-CL) was performed using lipase PS, copolymers with higher CL contents degraded more rapidly than did copolymers with higher l-LA content. In contrast, enzymatic degradation of copolymers occurred to a higher degree with increased l-LA content in enzymatic degradation by proteinase K. In a controlled release experiment with poly(l-LA-ran-CL) (=73/27), after 400 h of degradation by proteinase K, the remaining weight of the copolymer pellet was 6% and the amount of d-limonene remaining in the pellet was 15%.


Supercritical Carbon Dioxide Feed Ratio Impregnation Experiment Disodium Hydrogen Phosphate Solvent Casting Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to the head of the College and the Research Institute for permitting publication of this work.


  1. 1.
    Vasuki V, Lalji M, Prasad MP, Kalyanasundaram M (1999) Entomon 24:49Google Scholar
  2. 2.
    Anthony C, Tigner JR (1968) Wire Wire Prod 43(2):72Google Scholar
  3. 3.
    Liu R, Ma GH, Wan YH, Su ZG (2005) Colloids Surf B Biointerfaces 45:144CrossRefGoogle Scholar
  4. 4.
    Liu R, Ma GH, Meng FT, Su ZG (2005) J Control Release 103:31CrossRefGoogle Scholar
  5. 5.
    Pamujula S, Graves RA, Kishore V, Mandal TK (2004) Eur J Pharm Biopharm 57:213CrossRefGoogle Scholar
  6. 6.
    O’Donnell PB, McGinity JW (1997) Adv Drug Deliv Rev 28:25CrossRefGoogle Scholar
  7. 7.
    Arshady R (1991) J Control Release 17:1CrossRefGoogle Scholar
  8. 8.
    Hile DD, Pishko MV (2004) J Polym Sci [A] 39:562CrossRefGoogle Scholar
  9. 9.
    Ihata O, Kayaki Y, Ikariya T (2004) Angew Chem Int Ed 43:717CrossRefGoogle Scholar
  10. 10.
    Areerat S, Funami E, Hayata Y, Nakagawa D, Ohshima M (2004) Polym Eng Sci 44:1915CrossRefGoogle Scholar
  11. 11.
    Areerat S, Nagata T, Ohshima M (2002) Polym Eng Sci 42:2234CrossRefGoogle Scholar
  12. 12.
    Koga T, Seo YE, Hu X, Shin K, Zhang Y, Rafailovich MH, Sokolov JC, Chu B, Satija SK (2002) Euro Phys Lett 60:559CrossRefGoogle Scholar
  13. 13.
    Shieh YT, Su JH, Manivannan G, Lee PHC, Sawan SP, Spall WD (1996) J Appl Polym Sci 59:695CrossRefGoogle Scholar
  14. 14.
    Wang Y, Pfeffer R, Dave R, Enick R (2005) AIChE J 51:440CrossRefGoogle Scholar
  15. 15.
    Thote AJ, Gupta RB (2005) Nanomedicine 1:85CrossRefGoogle Scholar
  16. 16.
    Hile DD, Pishko MV (2004) Drug Deliv 11:287CrossRefGoogle Scholar
  17. 17.
    Mishima K, Matsuyama K, Tanabe D, Yamauchi S, Young TJ, Johnston KP (2000) AIChE J 46:857CrossRefGoogle Scholar
  18. 18.
    Ghaderi R, Artursson P, Carlfors J (2000) Eur J Pharm Sci 10:1CrossRefGoogle Scholar
  19. 19.
    Vion JM, Jerome R, Teyssie P, Aubin M, Prud’homme RE (1986) Macromolecules 19:1828CrossRefGoogle Scholar
  20. 20.
    Vanhoorne P, Dubois Ph, Jerome R, Teyssie Ph (1992) Macromolecules 25:37CrossRefGoogle Scholar
  21. 21.
    Kurcok P, Penczek J, Franek J, Jedlinski Z (1992) Macromolecules 25:2285CrossRefGoogle Scholar
  22. 22.
    Zhong Z, Yu D, Meng F, Gan Z, Jing X (1999) Polym J 31:633CrossRefGoogle Scholar
  23. 23.
    Maeda Y, Nakayama A, Arvanitoyannis I, Kawasaki N, Hayashi K, Yamamoto N, Aiba S (2000) Polym J 32:307CrossRefGoogle Scholar
  24. 24.
    Jessop PG, Ikariya T, Noyori R (1999) Chem Rev 99:475CrossRefGoogle Scholar
  25. 25.
    Reverchon EJ (1997) Supercrit Fluids 10:1CrossRefGoogle Scholar
  26. 26.
    Kendall JL, Canelas DA, Young JL, De Simone JM (1999) Chem Rev 99:543CrossRefGoogle Scholar
  27. 27.
    Tsutsumi C, Hayase N, Nakagawa K, Tanaka S, Miyahara Y (2003) Macromol Symp 197:431CrossRefGoogle Scholar
  28. 28.
    Tsutsumi C, Yasuda H (2001) J Polym Sci [A] 39:3916CrossRefGoogle Scholar
  29. 29.
    Tsutsumi C, Nakagawa K, Shirahama H, Yasuda H (2002) Macromol Biosci 2:223CrossRefGoogle Scholar
  30. 30.
    Williams DF (1981) Eng Med 10:5CrossRefGoogle Scholar
  31. 31.
    Reeve MS, McCarthy SP, Downey MJ, Gross RA (1994) Macromolecules 27:825CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chikara Tsutsumi
    • 1
    Email author
  • Jun Sakafuji
    • 1
  • Mai Okada
    • 1
  • Kazuyuki Oro
    • 2
  • Kazuaki Hata
    • 2
  1. 1.Department of Applied Chemistry and BiotechnologyNiihama National College of TechnologyNiihamaJapan
  2. 2.Research Institute for Solvothermal TechnologyTakamatsuJapan

Personalised recommendations