Journal of Materials Science

, Volume 44, Issue 13, pp 3520–3527 | Cite as

Effect of deposition parameters on microstructure of electrodeposited nickel thin films

  • Amaresh Chandra Mishra
  • Awalendra K. ThakurEmail author
  • V. Srinivas


Nickel thin films were prepared using electrodeposition process on a copper substrate. The effect of deposition parameters on film microstructure has been investigated with and without an organic additive (saccharin). Electrodeposition has been carried out using direct current electrodeposition (DCED) method and pulsed electrodeposition (PED) method. Significant reduction in crystallite size has been observed with the increase in saccharin concentration (~10 g/L) irrespective of the electrodeposition method. In PED, it has been observed that an increase in pulse width causes a drastic reduction in crystallite dimension (~15 nm) of the deposited Ni-film. Further PED process yielded needle-shaped Ni grains under controlled process conditions unlike in DCED, where spherical grain structure was observed in the micrographs. However, these needle-shaped grains change their microstructure on addition of saccharin to the bath. A phenomenological model is presented to explain the observed microstructural changes.


Crystallite Size Saccharin Nickel Film Pulse Electrodeposition Film Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Amaresh Chandra Mishra would like to thank Council of scientific and Industrial Research (CSIR) for providing financial assistance for carrying out this study. This study was partially supported by the Defence Research Development Organization (DRDO), New Delhi, India.


  1. 1.
    Roy I, Yang HW, Dinh L, Lund I, Earthman JC, Mohamed FA (2008) Scr Mater 59:305CrossRefGoogle Scholar
  2. 2.
    Palumbo G, Gonzalez F, Brennenstuhl AM, Erb U, Shmayda W, Lichtenberger PC (1997) Nanostruct Mater 9:737CrossRefGoogle Scholar
  3. 3.
    Osaka T (1997) Electrochim Acta 42:3015CrossRefGoogle Scholar
  4. 4.
    Osaka T, Sawaguchi T, Mizutani F, Yokoshima T, Takai M, Okinaka Y (1999) J Electrochem Soc 146:3295CrossRefGoogle Scholar
  5. 5.
    Tabakovic I, Inturi V, Riemer S (2002) J Electrochem Soc 149:C18CrossRefGoogle Scholar
  6. 6.
    Lallemand F, Comte D, Ricq L, Renaux P, Pagetti J, Dieppedale C, Gaud P (2004) Appl Surf Sci 225:59CrossRefGoogle Scholar
  7. 7.
    Gleiter H (1989) Prog Mater Sci 33:223CrossRefGoogle Scholar
  8. 8.
    Granqvist CG, Buhrman RA (1976) J Appl Phys 47:2200CrossRefGoogle Scholar
  9. 9.
    Erb U (1995) Nanostruct Mater 6:533CrossRefGoogle Scholar
  10. 10.
    Glasstone S (1964) An introduction to electrochemistry. Van Nostrand Inc., Princeton, NJGoogle Scholar
  11. 11.
    Natter H, Krajewski T, Hempelmann R (1996) Ber Bunsen Phys Chem 100:55CrossRefGoogle Scholar
  12. 12.
    Natter H, Hempelmann R (1996) J Phys Chem 100:19525CrossRefGoogle Scholar
  13. 13.
    O’Reilly C, Sanvito S, Rhen FMF, Stamenov P, Coey JMD (2006) J Appl Phys 99:08J301CrossRefGoogle Scholar
  14. 14.
    Karayianni HS, Patermarakis GS, Papaioannou JC (2002) Mater Lett 53:91CrossRefGoogle Scholar
  15. 15.
    Zhao H, Liu L, Zhu J, Tang Y, Hu W (2007) Mater Lett 61:1605CrossRefGoogle Scholar
  16. 16.
    Tang Y, Zhao D, Shen D, Zhang J, Li B, Lu Y, Fan X (2008) Thin Solid Films 516:2094CrossRefGoogle Scholar
  17. 17.
    Motoyama M, Fukunaka Y, Sakka T, Ogatab YH (2006) J Electrochem Soc 153:C502CrossRefGoogle Scholar
  18. 18.
    Li Y, Jiang H, Pang L, Wang B, Liang X (2007) Surf Coat Technol 201:5925CrossRefGoogle Scholar
  19. 19.
    Ebrahimi F, Ahmed Z (2003) J Appl Electrochem 33:733CrossRefGoogle Scholar
  20. 20.
    Ganesh V, Vijayaraghavan D, Lakshminarayanan V (2005) Appl Surf Sci 240:286CrossRefGoogle Scholar
  21. 21.
    Qu NS, Zhu D, Chan KC, Lei WN (2003) Surf Coat Technol 168:123CrossRefGoogle Scholar
  22. 22.
    Natter H, Schmelzer M, Hempelmann R (1998) J Mater Res 13:1186CrossRefGoogle Scholar
  23. 23.
    Gamburg YD, Grosheva MY, Biallozor S, Hass M (2002) Surf Coat Technol 150:95CrossRefGoogle Scholar
  24. 24.
    Oniciu L, Muresan L (1991) J Appl Electrochem 21:565CrossRefGoogle Scholar
  25. 25.
    Galvani F, Carlos IA (1997) Metal Finish 95:70CrossRefGoogle Scholar
  26. 26.
    Carlos IA, Malaquias MA, Oizumi MM, Matsuo TT (2001) J Power Sources 92:56CrossRefGoogle Scholar
  27. 27.
    Almeida MRH, Carlos IA, Barbosa LL, Carlos RM, Lima-Neto BS, Pallone EMJA (2002) J Appl Electrochem 32:763CrossRefGoogle Scholar
  28. 28.
    Carlos IA, Siqueira JL, Finazzi GA, Almeida MRH (2003) J Power Sources 117:179CrossRefGoogle Scholar
  29. 29.
    Carlos IA, Almeida MRH (2004) J Electroanal Chem 562:153CrossRefGoogle Scholar
  30. 30.
    Finazzi GA, Oliveira EM, Carlos IA (2004) Surf Coat Technol 187:377CrossRefGoogle Scholar
  31. 31.
    Barbosa LL, Almeida MRH, Carlos RM, Yonashiro M, Oliveira GM, Carlos IA (2005) Surf Coat Technol 192:145CrossRefGoogle Scholar
  32. 32.
    Darrort V, Troyon M, Ebotht J, Bissieux C, Nicollin C (1995) Thin Solid Films 265:52CrossRefGoogle Scholar
  33. 33.
    Mohamed FA, Chauhan M (2006) Metall Mater Trans A 37A:3555CrossRefGoogle Scholar
  34. 34.
    El-Sherik AM, Shirokoff J, Erb U (2005) J Alloys Compd 389:140CrossRefGoogle Scholar
  35. 35.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading, MAGoogle Scholar
  36. 36.
    Chauhan M, Mohamed FA (2007) J Mater Sci 42:1606. doi: CrossRefGoogle Scholar
  37. 37.
    Ares JR, Pascual A, Ferrer IJ, Sanchez C (2005) Thin Solid Films 480–481:477CrossRefGoogle Scholar
  38. 38.
    Dini JW (1996) Electrodeposition, the materials science of coatings and substrates. Noyes Publications, NorwichGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Amaresh Chandra Mishra
    • 1
  • Awalendra K. Thakur
    • 1
    Email author
  • V. Srinivas
    • 1
  1. 1.Department of Physics & MeteorologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations