Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3508–3513 | Cite as

Production and characteristics of glass-ceramics derived from manganese crust tailings

  • Terry LayEmail author
  • Maria Rockwell
  • Philippe Westreich
Article

Abstract

Glass-ceramics have been produced via vitrification from manganese crust tailings with over 23% reduction in tailings volume. The crystalline behaviour of parent glass and glass-ceramics were investigated using DTA, TGA, XRD, and SEM/EDS. XRD analysis revealed that the major crystalline phase was iron manganese oxide. The Vickers microhardness (Hv) was 9.74 MPa, the indentation strength (Kc) was 1.88 Mpa m1/2, and elastic modulus (E) was 140 MPa. The properties of the glass-ceramic compared well with known research and industrial glass-ceramic materials. Results suggest that manganese crust tailings have potential to be vitrified into useful, marketable glass-ceramic materials.

Keywords

Borax Nucleate Temperature Sodium Tetra Borate Surface Crystallization Parent Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Numerous measurements were performed using equipment made available by Dr. Jeff Dahn of the Department of Physics and Atmospheric Sciences at Dalhousie University.

References

  1. 1.
    Volpe R, Kelly WE (1985) Seepage and leakage from dams and impoundments. American Society of Civil Engineers. In: Proceedings of a symposium sponsored by the geotechnical engineering division in conjunction with the ASCE national convention, Denver, ColoradoGoogle Scholar
  2. 2.
    Simon M, Martin F, Ortiz I, Garcia I, Fernandez J, Fernandez E, Dorronsoro C, Aguilar J (2001) Sci Total Environ 279(1–3):63CrossRefGoogle Scholar
  3. 3.
    Riba I, Del Valls TA, Forja JM, Gomez-Parra A (2002) Mar Pollut Bull 44(1):39CrossRefGoogle Scholar
  4. 4.
    Blight GE, Fourie AB (2002) A review of catastrophic flow failures of deposits of mine waste and municipal refuse. University of Witwatersand, Johannesburg, SAGoogle Scholar
  5. 5.
    Scarinci G, Brusatin G, Barbieri L, Corradi A, Lancellotti I, Colombo P, Hreglich S, Dall’Igna R (2000) J Eur Ceram Soc 20(14–15):2485CrossRefGoogle Scholar
  6. 6.
    Barbieri L, Bonamartini AC, Lancellotti L (2000) J Eur Ceram Soc 20:2477CrossRefGoogle Scholar
  7. 7.
    Park YJ, Moon SO, Heo J (2002) Ceram Int 29:223CrossRefGoogle Scholar
  8. 8.
    Kavouras P, Kaimakamis G, Ionannidis TA (2003) Waste Manag 23:361CrossRefGoogle Scholar
  9. 9.
    Rawlings RD, Wu JP, Boccaccini AR (2006) J Mater Sci 41(3):733. doi: https://doi.org/10.1007/s10853-006-6554-3 CrossRefGoogle Scholar
  10. 10.
    Erol MM, Kucukbayrak S, Ersoy-Mericboyu A (2007) Chem Eng J 132(1–3):335CrossRefGoogle Scholar
  11. 11.
    Davim E, Fernandes MHV, Monteiro RCC (2007) Eur J Glass Sci Technol A 48(4):164Google Scholar
  12. 12.
    Cheng TW, Huang MZ, Tzeng CC, Cheng KB, Ueng TH (2007) Chemosphere 68(10):1937CrossRefGoogle Scholar
  13. 13.
    Yoon SD, Yun YH (2008) J Ceram Process Res 9(2):135Google Scholar
  14. 14.
    Wang Q, Yan J, Tu X, Chi Y, Li X, Lu S, Cen K (2009) Fuel 88(5):955CrossRefGoogle Scholar
  15. 15.
    Raigon-Pichardo M, Garcia-Ramos G, Sanchez-Soto PJ (1996) Resour Conserv Recy 17:109CrossRefGoogle Scholar
  16. 16.
    Marabini AM, Plescia P, Maccari D, Burragato F, Pelino M (1998) Int J Miner Process 53(1–2):121CrossRefGoogle Scholar
  17. 17.
    Shao H, Liang K, Peng F, Zhou A, Hu A (2005) Miner Eng 18:635CrossRefGoogle Scholar
  18. 18.
    Coruh S, Ergun ON, Cheng TW (2006) Waste Manag Res 24(3):234CrossRefGoogle Scholar
  19. 19.
    Menezes RR, Brasileiro MI, Santana LNL, Neves GA, Lira HL, Ferreira HC (2008) Waste Manag Res 26(4):362CrossRefGoogle Scholar
  20. 20.
    Lay GFT, Wiltshire J, Rockwell MC, Enomoto I (1996) Use of marine tailings in the formulation of specialty glasses, ceramic-glasses and glazes, Oceans Conference Record (IEEE). Proceedings of the 1996 MTS/IEEE Oceans Conference, Part 3 (of 3), Sept. 23–26, Fort Lauderdale, FL, USA, Sponsered by: IEEE, IEEE Piscataway NJ, USA, pp 1366–1371Google Scholar
  21. 21.
    Rawlings DR (1997) General principles of glass-ceramic production. In: Glass-ceramic materials: fundamentals and applications, series of monographs on materials science, engineering and technology. Muchi Editore, Modena, pp 115–133Google Scholar
  22. 22.
    James PF (1989) Glass and glass-ceramics. In: Lewis MH (ed) Volume nucleation in silicate glasses. Chapman and Hall, London, pp 59–105Google Scholar
  23. 23.
    Leroy C, Ferro MC, Monteiro RCC, Fernandes MHV (2001) J Eur Ceram Soc 21:195CrossRefGoogle Scholar
  24. 24.
    ASTM C693 (2001) Standard test method for density of glass by buoyancy, ASTM Book of Standards, 15.02, glass and ceramic whitewaresGoogle Scholar
  25. 25.
    Rincon JM, Capel F (1985) Ceram Int 11(3):97CrossRefGoogle Scholar
  26. 26.
    Evans AG, Charles EA (1976) Fracture toughness determined by indentation. J Am Ceram Soc 59(8):371CrossRefGoogle Scholar
  27. 27.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):533CrossRefGoogle Scholar
  28. 28.
    Lankford J (1982) J Mater Sci Lett 1:493CrossRefGoogle Scholar
  29. 29.
    Marshall DB, Tatsuo N, Evans AG (1982) J Am Ceram Soc 10:175CrossRefGoogle Scholar
  30. 30.
    Miyoshi T, Sagawa N, Sassa T (1989) J Jpn Soc Mech Eng 51A:2489Google Scholar
  31. 31.
    Lay GFT, Rockwell MC, Wiltshire JC, Ketata C (2009) Ceram Int 35 (in press)Google Scholar
  32. 32.
    Francis AA (2004) J Eur Ceram Soc 24:2819CrossRefGoogle Scholar
  33. 33.
    Merck (2006) The Merck Index, 13th edn. Wiley, John & SonsGoogle Scholar
  34. 34.
    Ford RW (1986) Ceramic drying. Pergamon Press, Oxford, UKGoogle Scholar
  35. 35.
    Sglavo VM, Campostrinin R, Maurina S, Carturan G, Monagheddu M, Budroni G, Cocco G (2000) J Eur Ceram Soc 20(3):235CrossRefGoogle Scholar
  36. 36.
    Shah JG, Patki VA, Raj K (1995) Waste Manag 15(5/6):417CrossRefGoogle Scholar
  37. 37.
    McMillan PW (1979) Glass-ceramics, 2nd edn. Academic Press, New York, NY, p 285Google Scholar
  38. 38.
    Acosta A, Afneto M, Iglesias I, Romero M, Rincon JM (2001) Mater Lett 50(4):246CrossRefGoogle Scholar
  39. 39.
    Sidkova TD, Irkakhodzhaeva AP, Sirazhiddinov NA (1997) Glass Ceram 54(3–4):98CrossRefGoogle Scholar
  40. 40.
    Karamanov A, Pelino M (1999) J Eur Ceram Soc 19(5):649CrossRefGoogle Scholar
  41. 41.
    Francis AA, Rawlings RD, Boccaccini AR (2001) J Mater Sci Lett 21:975CrossRefGoogle Scholar
  42. 42.
    Francis AA, Youssef NF (2004) Scand J Metall 33(4):236CrossRefGoogle Scholar
  43. 43.
    Romero M, Rincon JM (1999) J Am Ceram Soc 82:1313CrossRefGoogle Scholar
  44. 44.
    Carter S, Ponton CB, Rawlings RD, Rogers PS (1988) J Mater Sci 23(7):2622. doi: https://doi.org/10.1007/BF01111924 CrossRefGoogle Scholar
  45. 45.
    Pelino M, Cantalini C, Rincon JM (1997) J Mater Sci 32(17):4655. doi: https://doi.org/10.1023/A:1018602224392 CrossRefGoogle Scholar
  46. 46.
    Kim JM, Kim HS (2004) J Eur Ceram Soc 24:2373CrossRefGoogle Scholar
  47. 47.
    Cheng TW (2003) Chemosphere 50:47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Civil and Resource EngineeringDalhousie UniversityHalifaxCanada
  2. 2.Department of Physics and Atmospheric ScienceDalhousie UniversityHalifaxCanada

Personalised recommendations