Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3498–3503 | Cite as

Characterization of commercial double-walled carbon nanotube material: composition, structure, and heat capacity

  • Glaura G. SilvaEmail author
  • Anthony W. Musumeci
  • Ana Paula Gomes
  • Jiang-Wen Liu
  • Eric R. Waclawik
  • Graeme A. George
  • Ray L. Frost
  • Marcos A. Pimenta
Article

Abstract

A purified commercial double-walled carbon nanotube (DWCNT) sample was investigated by transmission electron microscopy (TEM), thermogravimetry (TG), and Raman spectroscopy. Moreover, the heat capacity of the DWCNT sample was determined by temperature-modulated differential scanning calorimetry in the range of temperature between −50 and 290 °C. The main thermo-oxidation characterized by TG occurred at 474 °C with the loss of 90 wt% of the sample. Thermo-oxidation of the sample was also investigated by high-resolution TG, which indicated that a fraction rich in carbon nanotube represents more than 80 wt% of the material. Other carbonaceous fractions rich in amorphous coating and graphitic particles were identified by the deconvolution procedure applied to the derivative of TG curve. Complementary structural data were provided by TEM and Raman studies. The information obtained allows the optimization of composites based on this nanomaterial with reliable characteristics.

Keywords

Heat Capacity Transmission Electron Microscopy Image Outer Tube Radial Breathing Mode Amorphous Coating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

G. G. Silva thanks the Brazilian agency CAPES for grant. This work was partially supported by Rede Nacional de Pesquisa em Nanotubos de Carbono/CNPq, Brazil. ERW gratefully acknowledges financial support from the United States Air Force’s Asian Office of Aerospace Research and Development. Project ID: AOARD-06-4041.

References

  1. 1.
    Hutchison JL, Kiselev NA, Krinichnaya EP, Krestinin AV, Loutfy RO, Morawsky AP, Muradyan VE, Obraztsova ED, Sloan J, Terekhov SV, Zakharov DN (2001) Carbon 39:761CrossRefGoogle Scholar
  2. 2.
    Flahaut E, Bacsa R, Peigney A, Laurent C (2003) Chem Commun 1442Google Scholar
  3. 3.
    Huang HJ, Kajiura H, Tsutsui S, Murakami Y, Ata M (2003) J Phys Chem B 107:8794CrossRefGoogle Scholar
  4. 4.
    Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus NS (2005) Nature 433:476CrossRefGoogle Scholar
  5. 5.
    Hiraoka T, Yamada T, Hata K, Futaba DN, Kurachi H, Uemura S, Yumura M, Iijima S (2006) JACS 128:13338CrossRefGoogle Scholar
  6. 6.
    Kociak M, Suenaga K, Hirahara K, Saito Y, Nakahira T, Iijima S (2002) Phys Rev Lett 89:155501CrossRefGoogle Scholar
  7. 7.
    Chen GG, Bandow S, Margine ER, Nisoli C, Kolmogorov AN, Crespi VH, Gupta R, Sumanasekera GU, Iijima S, Eklund PC (2003) Phys Rev Lett 90:257403CrossRefGoogle Scholar
  8. 8.
    Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizutani T, Yoshida H, Okazaki T, Shinohara H (2004) App Phys Lett 84:2412CrossRefGoogle Scholar
  9. 9.
    Li YJ, Wang KL, Wei JQ, Gu ZY, Wang ZC, Luo JB, Wu DH (2005) Carbon 43:31CrossRefGoogle Scholar
  10. 10.
    Arepalli S, Nikolaev P, Gorelik O, Hadjiev VG, Bradlev HA, Holmes W, Files B, Yowell L (2004) Carbon 42:1783CrossRefGoogle Scholar
  11. 11.
    Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Kim YJ, Tantrakarn K, Endo M, Terrones M, Dresselhaus MS (2005) Chem Phys Lett 414:444CrossRefGoogle Scholar
  12. 12.
    Musumeci AW, Silva GG, Martens WN, Waclawik ER, Frost RL (2007) J Therm Anal Calorim 88:885CrossRefGoogle Scholar
  13. 13.
    Trigueiro JPC, Silva GG, Lavall RL, Furtado CA, Oliveira S, Ferlauto AS, Lacerda RG, Ladeira LO, Liu JW, Frost RL, George GA (2007) J Nanosci Nanotechnol 7:3477CrossRefGoogle Scholar
  14. 14.
    Zhang XX, Deng CF, Xu R, Wang DZ (2007) J Mater Sci 42:8377. doi: https://doi.org/10.1007/s10853-007-1941-y CrossRefGoogle Scholar
  15. 15.
    Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Chem Phys Lett 402:422CrossRefGoogle Scholar
  16. 16.
    Osswald S, Flahaut E, Gogotsi Y (2006) Chem Mater 18:1525CrossRefGoogle Scholar
  17. 17.
    Gozzi D, Latini A, Lazzarini L (2008) Chem Mater 20:4126CrossRefGoogle Scholar
  18. 18.
    Abe M, Kataura H, Kira H, Kodama T, Suzuki S, Achiba Y, Kato K, Takata M, Fujiwara A, Matsuda K, Maniwa Y (2003) Phys Rev B 68:041405CrossRefGoogle Scholar
  19. 19.
    Bichoutskaia E, Heggie MI, Popov AM, Lozovik YE (2006) Phys Rev B 73:045435CrossRefGoogle Scholar
  20. 20.
    Mizel A, Benedict LX, Cohen ML, Louie SG, Zettl A, Budraa NK, Beyermann WP (1999) Phys Rev B 60:3264CrossRefGoogle Scholar
  21. 21.
    Yi W, Lu L, Zhang DL, Pan ZW, Xie SS (1999) Phys Rev B 59:R9015CrossRefGoogle Scholar
  22. 22.
    Li CY, Chou TW (2005) Mater Sci Eng A 409:140CrossRefGoogle Scholar
  23. 23.
    Hone J, Batlogg B, Benes Z, Johnson AT, Fischer JE (2000) Science 289:1730CrossRefGoogle Scholar
  24. 24.
    Fantini C, Jorio A, Souza M, Strano MS, Dresselhaus MS, Pimenta MA (2004) Phys Rev Lett 93:147406CrossRefGoogle Scholar
  25. 25.
    Reading M (2001) J Therm Anal Calorim 64:7CrossRefGoogle Scholar
  26. 26.
    Dinsdale AT (1991) Calphad 15:317CrossRefGoogle Scholar
  27. 27.
    Li F, Chou SG, Ren WC, Gardecki JA, Swan AK, Unlu MS, Goldberg BB, Cheng HM, Dresselhaus MS (2003) J Mater Res 18:1251CrossRefGoogle Scholar
  28. 28.
    Kim YA, Muramatsu H, Kojima M, Hayashi T, Endo M, Terrones M, Dresselhaus MS (2006) Chem Phys Lett 420:377CrossRefGoogle Scholar
  29. 29.
    Cancado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhaes-Paniago R, Pimenta MA (2006) App Phys Lett 88:163106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Glaura G. Silva
    • 1
    Email author
  • Anthony W. Musumeci
    • 2
  • Ana Paula Gomes
    • 1
  • Jiang-Wen Liu
    • 2
  • Eric R. Waclawik
    • 2
  • Graeme A. George
    • 2
  • Ray L. Frost
    • 2
  • Marcos A. Pimenta
    • 1
  1. 1.Instituto de Ciências ExatasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.School of Physical & Chemical SciencesQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations