Journal of Materials Science

, Volume 44, Issue 13, pp 3483–3487 | Cite as

Effect of in situ synthesized TiB2 on the reaction between B4C and Al in a vacuum infiltrated B4C–TiB2–Al composite

  • P. LüEmail author
  • X. Y. Yue
  • L. Yu
  • H. Q. Ru


The in situ reaction equation of B4C and TiO2 was identified using thermodynamic calculations and XRD analysis. The optimum presintering process was determined according to investigating the effect of presintering temperature on the flexural strength and porosity of the porous B4C–TiB2 preform. The effect of in situ synthesized TiB2 on the reaction products and initial reaction temperature of B4C and Al was discussed based on DSC and XRD analysis. The results showed that the in situ synthesized TiB2 could effectively improve the mechanical properties of the B4C–TiB2–Al composite, elevate the initial reaction temperature of B4C and Al, change the reaction products, and moderate the reaction of B4C and Al. The mechanism of reaction between B4C and Al was discussed.


TiO2 Flexural Strength Gibbs Free Energy Change TiB2 Phase Initial Reaction Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (No. 50372010), the Research Fund for the Doctoral Program of Higher Education (No. 20060145028) and Supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT0713).


  1. 1.
    Aizenshtein M, Froumin N, Shapiro-Tsoref E et al (2005) Scr Mater 53:1231CrossRefGoogle Scholar
  2. 2.
    Mashhadi M, Taheri-Nassaj E, Sglavo VM et al (2009) Ceram Int 35:831CrossRefGoogle Scholar
  3. 3.
    Fanchini G, Gupta V, Mann AB et al (2008) J Am Ceram Soc 91:2666CrossRefGoogle Scholar
  4. 4.
    Hayun S, Rittel D, Frage N et al (2008) Mater Sci Eng A 487:405CrossRefGoogle Scholar
  5. 5.
    Roy TK, Subramanian C, Suri AK (2006) Ceram Int 32:227CrossRefGoogle Scholar
  6. 6.
    Lee H, Speyer RF, Hackenberger WS (2002) J Am Ceram Soc 85:2131CrossRefGoogle Scholar
  7. 7.
    Chen MW, McCauley JW, LaSalvia JC et al (2005) J Am Ceram Soc 88:1935CrossRefGoogle Scholar
  8. 8.
    Lee BS, Kang S (2001) Mater Chem Phys 67:249CrossRefGoogle Scholar
  9. 9.
    Goldstein A, Yeshurun Y, Goldenberg A (2007) J Eur Ceram Soc 27:695CrossRefGoogle Scholar
  10. 10.
    Heian EM, Khalsa SK, Lee JW et al (2004) J Am Ceram Soc 87:779CrossRefGoogle Scholar
  11. 11.
    Marianna K, Christoper SM, Andreas M (2002) Mater Sci Eng A 337:264CrossRefGoogle Scholar
  12. 12.
    Shi L, Gu YL, Chen LY et al (2003) Solid State Commun 128:5CrossRefGoogle Scholar
  13. 13.
    Wen G, Li SB, Zhang BS et al (2000) Scr Mater 43:853CrossRefGoogle Scholar
  14. 14.
    Yamada S, Hirao K, Yamauchi Y et al (2003) Ceram Int 29:299CrossRefGoogle Scholar
  15. 15.
    Skorokhod V, Krstic VD (2000) J Mater Sci Lett 19:237CrossRefGoogle Scholar
  16. 16.
    Yamada S, Hirao K, Yamauchi Y et al (2003) J Eur Ceram Soc 23:1123CrossRefGoogle Scholar
  17. 17.
    Jung J, Kang S (2004) J Am Ceram Soc 87:47CrossRefGoogle Scholar
  18. 18.
    Frage N, Levin L, Frumin N et al (2003) J Mater Process Technol 143–144:486CrossRefGoogle Scholar
  19. 19.
    Arslan G, Kara F, Turan S (2003) J Eur Ceram Soc 23:1243CrossRefGoogle Scholar
  20. 20.
    PyziK AJ, Beaman DR (1995) J Am Ceram Soc 78:305CrossRefGoogle Scholar
  21. 21.
    Viala JC, Bouix J (1997) J Mater Sci 32:4559. doi: CrossRefGoogle Scholar
  22. 22.
    Liang YJ, Che YC (1994) Inorganic materials thermodynamics data book. Northeastern University, ChinaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangChina

Personalised recommendations