Journal of Materials Science

, Volume 44, Issue 19, pp 5249–5255 | Cite as

Ab initio study of antiferroelectric PbZrO3 (001) surfaces

  • G. Pilania
  • D. Q. Tan
  • Y. Cao
  • V. S. Venkataramani
  • Q. Chen
  • R. RamprasadEmail author


We have carried out first-principles total-energy calculations of bulk and (001) surfaces of PbZrO3. The ground state for bulk PbZrO3 is determined to be the antiferroelectric orthorhombic phase, with the ferroelectric rhombohedral and paraelectric cubic phases being 0.14 and 0.39 eV per formula unit higher in energy, respectively. PbO- and ZrO2-terminated (001) surfaces, either clean or when hydroxyl species were adsorbed were considered. Surface relaxations, in-plane antiferroelectric distortions and modifications to the electronic structure due to the surfaces, and hydroxyl adsorbates on the surfaces were investigated. We find that while clean surfaces retained bulk-like behavior, hydroxyl adsorbates induce significant changes to the surface geometry as well as introduce electronic states in the band gap possibly rendering the surfaces metallic.


BaTiO3 Hydroxyl Species Hydroxyl Adsorption ZrO2 Layer Surface Rumpling 



GP and RR would like to acknowledge financial support of this work by a grant from DARPA through a sub-contract from General Electric. Helpful discussions with Dr. Steve Boggs and Dr. Pamir Alpay are gratefully acknowledged.


  1. 1.
    Scott JF (2007) Science 315:954CrossRefGoogle Scholar
  2. 2.
    Watton R (1989) Ferroelectrics 91:87CrossRefGoogle Scholar
  3. 3.
    Whatmore RW (1991) Ferroelectrics 118:241CrossRefGoogle Scholar
  4. 4.
    Lines ME, Glass AM (1977) Principles and applications of ferroelectric and related materials. Clarendon, OxfordGoogle Scholar
  5. 5.
    Noguera C (1996) Physics and chemistry at oxide surfaces. Cambridge University Press, New YorkCrossRefGoogle Scholar
  6. 6.
    Jona F, Shirane G, Mazzi F, Pepinsky R (1957) Phys Rev 105:849CrossRefGoogle Scholar
  7. 7.
    Whatmore RW, Glazer AM (1979) J Phys C 12:1505CrossRefGoogle Scholar
  8. 8.
    Sawaguchi E, Shiozaki Y, Fujishita H, Tanaka M (1980) J Phys Soc Jpn 49(suppl B):191Google Scholar
  9. 9.
    Fujishita H, Shiozaki Y, Achiwa N, Sawaguchi E (1982) J Phys Soc Jpn 51:3583CrossRefGoogle Scholar
  10. 10.
    Tanaka M, Saito R, Tsuzuki K (1982) J Phys Soc Jpn 51:2635CrossRefGoogle Scholar
  11. 11.
    Fujishita H, Hoshino S (1984) J Phys Soc Jpn 53:226CrossRefGoogle Scholar
  12. 12.
    Fujishita H, Katano S (2000) Ferroelectrics 237:209CrossRefGoogle Scholar
  13. 13.
    Fujishita H, Tanaka S (2001) Ferroelectrics 258:37CrossRefGoogle Scholar
  14. 14.
    Fujishita H, Ishikawa Y, Tanaka S, Ogawaguchi A, Katano S (2003) J Phys Soc Jpn 72:1426CrossRefGoogle Scholar
  15. 15.
    Singh DJ (1995) Phys Rev B 52:12559CrossRefGoogle Scholar
  16. 16.
    Johannes MD, Singh DJ (2005) Phys Rev B 71:212101CrossRefGoogle Scholar
  17. 17.
    Robertson J (2000) J Vac Sci Technol B 18(3):1785CrossRefGoogle Scholar
  18. 18.
    Piskunov S, Gopeyenko A, Kotomin EA, Zhukovskii YuF, Ellis DE (2007) Comput Mater Sci 41:195CrossRefGoogle Scholar
  19. 19.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  20. 20.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13(12):5188CrossRefGoogle Scholar
  21. 21.
    Aoyagi S, Kuroiwa Y, Sawada A, Tanaka H, Harada J, Nishibori E, Takata M, Sakata M (2002) J Phys Soc Jpn 71:2353CrossRefGoogle Scholar
  22. 22.
    Kagimura R, Singh DJ (2008) Phys Rev B 77:104113CrossRefGoogle Scholar
  23. 23.
    Baedi J, Hosseini SM, Kompany A, Attaran Kakhki E (2008) Phys Status Solidi (B) 245:2572CrossRefGoogle Scholar
  24. 24.
    Leung K, Wright AF (2002) Ferroelectrics 281:171CrossRefGoogle Scholar
  25. 25.
    Eglitis RI, Vanderbilt D (2007) Phys Rev B 76:155439CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. Pilania
    • 1
  • D. Q. Tan
    • 2
  • Y. Cao
    • 2
  • V. S. Venkataramani
    • 2
  • Q. Chen
    • 2
  • R. Ramprasad
    • 1
    Email author
  1. 1.Chemical, Materials, and Biomolecular Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.GE Global Research Center, One Research CircleNiskayunaUSA

Personalised recommendations