Journal of Materials Science

, Volume 44, Issue 13, pp 3428–3437 | Cite as

Experimental investigation of mixed-mode fracture behaviour of woven laminated composite

  • Masood Nikbakht
  • Naghdali ChoupaniEmail author


In this paper, the mixed-mode interlaminar fracture behaviour of woven carbon-epoxy composite was investigated based on experimental and numerical analyses. A modified version of Arcan specimen was employed to conduct a mixed mode fracture test using a special loading device. A full range of mixed-mode loading conditions including pure mode-I and pure mode-II loading were created and tested. This test method has a simple procedure, clamping/unclamping the specimens are easy to achieve and only one type of specimen is required to generate all loading conditions. Also, finite element analysis was carried out for different loading conditions in order to determine correction factors needed for fracture toughness calculations. Interlaminar fracture toughness was determined experimentally with the modified version of the Arcan specimen under different mixed-mode loading conditions. Results indicated that the interlaminar cracked specimen is tougher in shear loading condition and weaker in tensile loading condition. Response of woven carbon-epoxy composite was also investigated through several criteria and the best criterion was selected. The interlaminar fracture surfaces of the carbon-epoxy composite under different mixed-mode loading conditions are examined by scanning electron microscopy (SEM).


Fracture Toughness Stress Intensity Factor Strain Energy Release Rate Double Cantilever Beam Interlaminar Fracture Toughness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dharmawan F, Simpson G, Herszberg I, John S (2006) Compos Struct 75:328CrossRefGoogle Scholar
  2. 2.
    Reeder JR, Crews JR (1990) AIAA J 28:1270CrossRefGoogle Scholar
  3. 3.
    Banks-Sills L, Freed Y, Eliasi R, Fourman V (2006) Int J Fract 141:195CrossRefGoogle Scholar
  4. 4.
    Liu C, Huang Y, Lovato ML, Stout MG (1997) Int J Fract 87:241CrossRefGoogle Scholar
  5. 5.
    Kim BW, Mayer AH (2003) Compos Sci Technol 63:695CrossRefGoogle Scholar
  6. 6.
    Arcan M, Hashin Z, Voloshin A (1978) Exp Mech 18:141CrossRefGoogle Scholar
  7. 7.
    Banks-Sills L, Arcan M, Bortman Y (1984) Eng Fract Mech 20(1):145CrossRefGoogle Scholar
  8. 8.
    Jurf RA, Pipes RB (1982) J Compos Mater 16:386CrossRefGoogle Scholar
  9. 9.
    Yoon SH, Hong CS (1990) Exp Mech 30:234Google Scholar
  10. 10.
    Choupani N (2008) Mater Sci Technol 478:229Google Scholar
  11. 11.
    Kinloch AJ, Wang Y, Williams JG, Yayla P (1993) Compos Sci Technol 47:225CrossRefGoogle Scholar
  12. 12.
    Gilchrist MD, Svensson N, Shishoo R (1998) J Mater Sci 33:4049. doi: CrossRefGoogle Scholar
  13. 13.
    Stevanovic D, Kalyanasundaram S, Lowe A, Jar PYB (2003) Compos Sci Technol 63:1949CrossRefGoogle Scholar
  14. 14.
    Benzeggagh ML, Kenane M (1996) Compos Sci Technol 56(4):439CrossRefGoogle Scholar
  15. 15.
    Ducept F, Davies P, Gamby D (1997) Compos A Appl Sci Manuf 28(8):719CrossRefGoogle Scholar
  16. 16.
    Ducept F, Davies P, Gamby D (2000) Int J Adhes Adhes 20:233CrossRefGoogle Scholar
  17. 17.
    Ducept F, Gamby D, Davies P (1999) Compos Sci Technol 59(4):609CrossRefGoogle Scholar
  18. 18.
    Hashemi S, Kinloch AJ, Williams JG (1990) Compos Sci Technol 37:429CrossRefGoogle Scholar
  19. 19.
    Kikuchi M, Kuroda M (1992) JSME Int J Ser 1 Solid Mech Strength Mater 35(4):496CrossRefGoogle Scholar
  20. 20.
    Naik NK, Reddy KS, Meduri S, Raju NB, Prasad PD, Azad SNM, Ogde PA, Reddy BCK (2002) J Mater Sci 37(14):2983. doi: CrossRefGoogle Scholar
  21. 21.
    O’Brien TK (1998) Compos B Eng 29(1):57CrossRefGoogle Scholar
  22. 22.
    Rikards R, Buchholz F-G, Wang H, Bledzki AK, Korjakin A, Richard H-A (1998) Eng Fract Mech 61(3–4):325CrossRefGoogle Scholar
  23. 23.
    Warrior NA, Pickett AK, Lourenc NSF (2003) Strain 39(4):153CrossRefGoogle Scholar
  24. 24.
    American Society for Testing and Materials (1991) Standard D5045-91a, plane-stain fracture toughness and strain energy release rate of plastic materials, annual book of ASTM standards. ASTM, PhiladelphiaGoogle Scholar
  25. 25.
    ABAQUS (2004) ABAQUS user’s manual, version 6.5. Hibbit, Karlsson and Sorensen, HKS Inc, Pawtucket, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentSahand University of TechnologyTabrizIran

Personalised recommendations