Advertisement

Journal of Materials Science

, Volume 44, Issue 13, pp 3413–3419 | Cite as

In situ synthesis of transparent fluorescent ZnS–polymer nanocomposite hybrids through catalytic chain transfer polymerization technique

  • Li Chen
  • Caifeng Wang
  • Qing Li
  • Shengyang Yang
  • Linrui Hou
  • Su ChenEmail author
Article

Abstract

We report the controllable synthesis of zinc sulfide (ZnS) nanocrystals (NCs)/polymer transparent nanocomposite hybrids in situ based on the catalytic chain transfer polymerization (CCTP) technique. Firstly, a polymeric ligand PMAA [PMAA = poly(acrylic acid)] with controllable low-molecular-weight and a terminal double bond was synthesized through CCTP. Secondly, with the use of this versatile polymeric ligand containing a large number of anchors as the stabilizer, the ZnS NCs were fabricated. Finally, the surface polymeric ligands containing terminal double bonds were copolymerized with methyl methacrylate monomer to form NCs–polymer hybrids through free radical polymerization. The properties of as-prepared ZnS NCs and their nanocomposite hybrids were thoroughly investigated by Fourier transform Raman spectra, Fourier transform infrared spectrum, transmission electron microscope, ultraviolet–visible, photoluminescence, and thermogravimetric analyses measurements. The spectroscopic studies reveal that ZnS–polymer nanocomposite hybrids have good optical properties.

Keywords

PMMA PMAA Polymer Hybrid Nanocomposite Hybrid Pure PMMA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This study was supported by Natural Science Foundations (NSFs) of China (Grant No. 20576053, 20606016), NSF (NASA) of China (Grant No. 10676013), and the NSF of the Jiangsu Higher Education Institutions of China (Grant No. 07KJA53009).

References

  1. 1.
    Steigerwald ML, Brus LE (1990) Acc Chem Res 23:183CrossRefGoogle Scholar
  2. 2.
    Alivisatos AP (1996) J Phys Chem 100:13226CrossRefGoogle Scholar
  3. 3.
    Loss D, DiVincenzo DP (1998) Phys Rev A 57:120CrossRefGoogle Scholar
  4. 4.
    Murray CB, Kagan CR, Bawendi MG (2000) Annu Rev Mater Sci 30:545CrossRefGoogle Scholar
  5. 5.
    Burda C, Chen X, Narayanan R et al (2005) Chem Rev 105:1025CrossRefGoogle Scholar
  6. 6.
    Cao XD, Li CM, Bao QL et al (2007) Chem Mater 19:3733Google Scholar
  7. 7.
    Hwang JI, Oh M, Kim L et al (2005) Curr Appl Phys 5:31CrossRefGoogle Scholar
  8. 8.
    Bai C, Fang Y, Zhang Y et al (2004) Langmuir 20:263CrossRefGoogle Scholar
  9. 9.
    Pich A, Hain J, Lu Y et al (2005) Macromolecules 38:6610CrossRefGoogle Scholar
  10. 10.
    Ni Y, Ge X, Zhang Z (2005) Mater Sci Eng 119:51CrossRefGoogle Scholar
  11. 11.
    Guo L, Chen S, Chen L (2007) Colloid Polym Sci 285:1593CrossRefGoogle Scholar
  12. 12.
    Lü C, Cui Z, Wang Y et al (2003) J Mater Chem 13:2189CrossRefGoogle Scholar
  13. 13.
    Lü C, Cheng Y, Liu Y et al (2006) Adv Mater 18:1188CrossRefGoogle Scholar
  14. 14.
    Hirai T, Watanabe T, Komasawa I (2000) J Phys Chem B 104:8962CrossRefGoogle Scholar
  15. 15.
    Chen S, Zhu J, Shen Y et al (2007) Langmuir 23:850CrossRefGoogle Scholar
  16. 16.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706CrossRefGoogle Scholar
  17. 17.
    Lee J, Sundar VC, Heine JR et al (2000) Adv Mater 12:1102CrossRefGoogle Scholar
  18. 18.
    Lopes WA, Jaeger HM (2001) Nature 414:735CrossRefGoogle Scholar
  19. 19.
    Böker A, Lin Y, Chiallerini K et al (2004) Nat Mater 3:302CrossRefGoogle Scholar
  20. 20.
    Lin Y, Böker A, He J et al (2005) Nature 434:55CrossRefGoogle Scholar
  21. 21.
    Mackay ME, Tuteja A, Duxbury PM et al (2006) Science 311:1740CrossRefGoogle Scholar
  22. 22.
    Balazs AC, Emrick T, Russell TP (2006) Science 314:1107CrossRefGoogle Scholar
  23. 23.
    Wang X, Guerin G, Wang H et al (2007) Science 317:644CrossRefGoogle Scholar
  24. 24.
    Chen S, Sui JJ, Chen L et al (2005) J Polym Sci Part A Polym Chem 43:1670CrossRefGoogle Scholar
  25. 25.
    Chen S, Sui JJ, Chen L (2004) Colloid Polym Sci 283:66CrossRefGoogle Scholar
  26. 26.
    Potapova I, Mruk R, Hubner C et al (2005) Angew Chem Int Ed 44:2437CrossRefGoogle Scholar
  27. 27.
    Wang CW, Moffitt MG (2004) Langmuir 20:11784CrossRefGoogle Scholar
  28. 28.
    Guo W, Li JJ, Wang YA et al (2003) J Am Chem Soc 125:3901CrossRefGoogle Scholar
  29. 29.
    Chen KB, Chen MH, Yang SH et al (2006) J Polym Sci Polym Chem 44:5378CrossRefGoogle Scholar
  30. 30.
    Chen L, Zhu J, Li Q et al (2007) Eur Polym J 43:4593CrossRefGoogle Scholar
  31. 31.
    Potapova I, Mruk R, Prehl S et al (2003) J Am Chem Soc 125:320CrossRefGoogle Scholar
  32. 32.
    Watson KJ, Zhu J, Nguyen ST et al (1999) J Am Chem Soc 121:462CrossRefGoogle Scholar
  33. 33.
    Skaff H, Ilker MF, Coughlin EB et al (2002) J Am Chem Soc 124:5729CrossRefGoogle Scholar
  34. 34.
    Zhang H, Wang C, Li M et al (2005) Chem Mater 17:4783CrossRefGoogle Scholar
  35. 35.
    Korth BD, Keng P, Shim I et al (2006) J Am Chem Soc 128:6562CrossRefGoogle Scholar
  36. 36.
    Choudhury KR, Sahoo Y, Prasad PN (2005) Adv Mater 17:2877CrossRefGoogle Scholar
  37. 37.
    Moffitt M, McMahon L, Pessel V (1995) Chem Mater 7:1185CrossRefGoogle Scholar
  38. 38.
    Mayer ABR, Mark JE (1998) Eur Polym J 34:103CrossRefGoogle Scholar
  39. 39.
    Roan JR (2001) Phys Rev Lett 86:1027CrossRefGoogle Scholar
  40. 40.
    Qi L, Colfen H, Antonietti M (2001) Nano Lett 1:61CrossRefGoogle Scholar
  41. 41.
    Yu K, Wang H, Han Y (2007) Langmuir 23:8957CrossRefGoogle Scholar
  42. 42.
    Moffitt M, Vali H, Eisenberg A (1998) Chem Mater 10:1021CrossRefGoogle Scholar
  43. 43.
    Zhao HY, Douglas EP, Harrison BS et al (2001) Langmuir 17:8428CrossRefGoogle Scholar
  44. 44.
    Zhao HY, Douglas EP (2002) Chem Mater 14:1418CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Chen Y, Niu H et al (2006) Small 2:1314CrossRefGoogle Scholar
  46. 46.
    Gridnev AA, Ittel SD (2001) Chem Rev 101:3611CrossRefGoogle Scholar
  47. 47.
    Heuts JPA, Roberts GE, Biasutti JD (2002) Aust J Chem 55:381CrossRefGoogle Scholar
  48. 48.
    Bakac A, Espenson JH (1984) J Am Chem Soc 106:5197CrossRefGoogle Scholar
  49. 49.
    Suddaby KG, Sanayei RA, Rudin A et al (1991) J Appl Polym Sci 43:1565CrossRefGoogle Scholar
  50. 50.
    Haddleton DM, Depaquis E, Kelly E et al (2001) J Polym Sci Polym Chem 39:2378CrossRefGoogle Scholar
  51. 51.
    Brus LE (1984) J Chem Phys 80:4403CrossRefGoogle Scholar
  52. 52.
    Brus LE (1986) J Phys Chem 90:2555CrossRefGoogle Scholar
  53. 53.
    Wang Y, Herron N (1991) J Phys Chem 95:525CrossRefGoogle Scholar
  54. 54.
    Paquet C, Kumacheva E (2007) Adv Funct Mater 17:3105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Li Chen
    • 1
  • Caifeng Wang
    • 1
  • Qing Li
    • 1
  • Shengyang Yang
    • 1
  • Linrui Hou
    • 1
  • Su Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemistry and Chemical EngineeringNanjing University of TechnologyNanjingPeople’s Republic of China

Personalised recommendations