Journal of Materials Science

, Volume 44, Issue 13, pp 3408–3412 | Cite as

Microstructure and mechanical properties of nanolayered W/W–C thin films

  • K. AbdelouahdiEmail author
  • C. Legrand-Buscema
  • P. Aubert


The present study reports on the mechanical and structural properties of W/W–C multilayered thin films with bilayer periods Λ ranging from 2.5 to 100 nm. Films were grown by reactive sputtering radio frequency on Si (100) substrate. X-ray diffraction (XRD), grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity were used to globally characterise the multilayers structure. Hardness and Young modulus have been determined using nanoindentation with a Berkovich tip. The XRD and the GIXRD diagrams revealed the presence of three phases: WC1−x randomly oriented, W2C with (100) preferred orientation and W with (110) preferred orientation. An increase in hardness is observed with decreasing period Λ, reaching a maximum value of ~26 GPa at Λ = 2.5 nm.


Tungsten Carbide Tungsten Layer Bilayer Period Sputter Radio Frequency Period Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kong M, Shao N, Dong Y, Yue J, Li G (2006) Mater Lett 60:874CrossRefGoogle Scholar
  2. 2.
    Bejarano G, Caicedo JM, Baca E, Prieto P, Balogh AG, Enders S (2006) Thin Solid Films 494:53CrossRefGoogle Scholar
  3. 3.
    Koehler JS (1978) Phys Rev B 2:547CrossRefGoogle Scholar
  4. 4.
    Verdier M (2004) Scr Mater 50:769CrossRefGoogle Scholar
  5. 5.
    Toth LE (1971) Handbook of transition metal carbides and nitrides. Academic Press, New York and LondonGoogle Scholar
  6. 6.
    Smallwood RE (1982) Refractory metals and their industrial applications. ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, Philadelphia, PA, p 82Google Scholar
  7. 7.
    Abdelouahdi K, Sant C, Miserque F, Aubert P, Zhen Y, Legrand-Buscema C, Perrière J (2006) J Phys Condens Matter 18:1913CrossRefGoogle Scholar
  8. 8.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  9. 9.
    Maillé L, Aubert P, Sant C, Garnier P (2004) Surf Coat Technol 180–181:483CrossRefGoogle Scholar
  10. 10.
    Ben Daia M, Aubert P, Labdi S, Sant C, Sadi FA, Houdy P (2000) J Appl Phys 87:7753CrossRefGoogle Scholar
  11. 11.
    Was GS, Foecke T (1996) Thin Solid Films 286:1CrossRefGoogle Scholar
  12. 12.
    Misra A, Verdier M, Kung H, Embury JD, Hirth JP (1999) Scr Mater 41:973CrossRefGoogle Scholar
  13. 13.
    Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD (1998) Scr Mater 39:555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Laboratoire d’étude des Milieux NanométriquesUniversité d’Evry Val d’EssonneEvry CedexFrance

Personalised recommendations