Journal of Materials Science

, Volume 44, Issue 19, pp 5354–5363 | Cite as

Influence of long-range dipolar interactions on the phase stability and hysteresis shapes of ferroelectric and antiferroelectric multilayers

  • I. B. MisirliogluEmail author
  • L. Pintilie
  • M. Alexe
  • D. Hesse


Phase transition and field driven hysteresis evolution of a two-dimensional Ising grid consisting of ferroelectric–antiferroelectric multilayers that take into account the long range dipolar interactions were simulated by a Monte–Carlo method. Simulations were carried out for a 1 + 1 bilayer and a 5 + 5 superlattice. Phase stabilities of components comprising the structures with an electrostatic-like coupling term were also studied. An electrostatic-like coupling, in the absence of an applied field, can drive the ferroelectric layers toward 180° domains with very flat domain interfaces mainly due to the competition between this term and the dipole–dipole interaction. The antiferroelectric layers do not undergo an antiferroelectric-to-ferroelectric transition under the influence of an electrostatic-like coupling between layers as the ferroelectric layer splits into periodic domains at the expense of the domain wall energy. The long-range interactions become significant near the interfaces. For high periodicity structures with several interfaces, the interlayer long-range interactions substantially impact the configuration of the ferroelectric layers while the antiferroelectric layers remain quite stable unless these layers are near the Neel temperature. In systems investigated with several interfaces, the hysteresis loops do not exhibit a clear presence of antiferroelectricity that could be expected in the presence of anti-parallel dipoles, i.e., the switching takes place abruptly. Some recent experimental observations in ferroelectric–antiferroelectric multilayers are discussed where we conclude that the different electrical properties of bilayers and superlattices are not only due to strain effects alone but also due to long-range interactions. The latter manifests itself particularly in superlattices where layers are periodically exposed to each other at the interfaces.


Hysteresis Loop Phase Transition Behavior Ferroelectric Layer Depolarization Field Antiparallel Alignment 



One of the authors (I. B. M.) acknowledges Sabanci University for providing hardware and software support that were greatly benefited from in this work. L. P. acknowledges the financial support of the Romanian Ministry of Education, Research and Innovation-National Authority for Scientific Research, through the project having contract number PN II 72-149-HETOX, with the mention that the work has been done disregarding the 90% cut of the project budget for year 2009.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Haun MJ, Harvin TJ, Lanagan MT, Zhuang ZQ, Jang SJ, Cross LE (1989) J Appl Phys 65:3173CrossRefGoogle Scholar
  2. 2.
    Waghmare UV, Rabe KM (1997) Ferroelectrics 194:135CrossRefGoogle Scholar
  3. 3.
    Hatt RA, Cao W (2000) Phys Rev B 62:818CrossRefGoogle Scholar
  4. 4.
    Chew K-H, Ong L-H, Osman J, Tilley DR (2000) Appl Phys Lett 77:2755CrossRefGoogle Scholar
  5. 5.
    Ong L-H, Osman J, Tilley DR (2002) Phys Rev B 65:134108CrossRefGoogle Scholar
  6. 6.
    Wu Y-Z, Yao D-L, Li Z-Y (2002) J Appl Phys 91:1482CrossRefGoogle Scholar
  7. 7.
    Wang CL, Tilley DR (2003) Mater Sci Eng B B99:572CrossRefGoogle Scholar
  8. 8.
    Milhazes J, Lanceros-Mendez S, Cadilhe A (2005) Phys Stat Sol (b) 242:1141CrossRefGoogle Scholar
  9. 9.
    Essaoudi I, Barner K, Ainane A, Saber M (2007) Physica Scripta 75:500CrossRefGoogle Scholar
  10. 10.
    Essaoudi I, Ainane A, Saber M, de Miguel JJ (2007) Phys Stat Sol (b) 244:3398CrossRefGoogle Scholar
  11. 11.
    Eliseev EA, Glinchuk MD, Morozovska AN (2007) Phase Transitions 80:47CrossRefGoogle Scholar
  12. 12.
    Yang B, Zhang D-M, Zheng C-D, Wang J, Yu J (2007) J Phys D Appl Phys 40:5696CrossRefGoogle Scholar
  13. 13.
    Kanno I, Hayashi S, Takayama R, Hirao T (1996) Appl Phys Lett 68:328CrossRefGoogle Scholar
  14. 14.
    Li L, Chen XM, Liu XQ (2005) Mater Res Bull 40:1194CrossRefGoogle Scholar
  15. 15.
    Hung C-L, Chueh Y-L, Wu T-B, Chou L-J (2005) J Appl Phys 97:034105CrossRefGoogle Scholar
  16. 16.
    Ranjith R, Nikhil R, Krupanidhi SB (2006) Phys Rev B 74:184104CrossRefGoogle Scholar
  17. 17.
    Boldyreva K, Pintilie L, Lotnyk A, Misirlioglu IB, Alexe M, Hesse D (2007) Appl Phys Lett 91:122915CrossRefGoogle Scholar
  18. 18.
    Bolten D, Boettger U, Waser R (2004) Appl Phys Lett 84:2379CrossRefGoogle Scholar
  19. 19.
    Phillpot SR, Sepliarsky M, Stachiotti MG, Migoni RL, Streiffer SK (2005) J Mater Sci 40:3213. doi: CrossRefGoogle Scholar
  20. 20.
    Liu JM, Lau ST, Chan HLW, Choy CL (2006) J Mater Sci 41:163. doi: CrossRefGoogle Scholar
  21. 21.
    Choudhury S, Li YL, Krill C, Chen LQ (2007) Acta Mater 55:1417CrossRefGoogle Scholar
  22. 22.
    Choudhury S, Li YL, Odagawa N, Vasudevarao A, Tian L, Capek P, Dierolf V, Morozovska AN, Eliseev EA, Kalinin S, Cho YS, Chen LQ, Gopalan V (2008) J Appl Phys 104:084107CrossRefGoogle Scholar
  23. 23.
    Szabo G, Kadar G (1998) Phys Rev B 58:5584CrossRefGoogle Scholar
  24. 24.
    Magni A (1999) Phys Rev B 59:985CrossRefGoogle Scholar
  25. 25.
    Magni A, Vertesy G (2000) Phys Rev B 61:3203CrossRefGoogle Scholar
  26. 26.
    de Gennes PG (1963) Solid State Commun 1:132CrossRefGoogle Scholar
  27. 27.
    Misirlioglu IB, Pintilie L, Boldyreva K, Alexe M, Hesse D (2007) Appl Phys Lett 91:202905CrossRefGoogle Scholar
  28. 28.
    Bratkovsky AM, Levanyuk AP (2000) Phys Rev Lett 84:3177CrossRefGoogle Scholar
  29. 29.
    Bratkovsky AM, Levanyuk AP (2006) Integrated Ferroelectrics 84:3CrossRefGoogle Scholar
  30. 30.
    Strukov BA, Levanyuk AP (1998) Ferroelectric phenomena in crystals: physical foundations. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  31. 31.
    Binder K, Heermann DW (2002) Monte Carlo simulation in statistical physics: an introduction, 4th edn. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  32. 32.
    Zhai J, Yao Y, Li X, Hung TF, Xu ZK, Chen H, Colla EV (2002) J Appl Phys 92:3990CrossRefGoogle Scholar
  33. 33.
    Alkoy EM, Alkoy S, Shiosaki T (2006) Jpn J Appl Phys 45:4137CrossRefGoogle Scholar
  34. 34.
    Boldyreva K, Bao DH, Le Rhun G, Pintilie L, Alexe M, Hesse D (2007) J Appl Phys 102:044111CrossRefGoogle Scholar
  35. 35.
    Leyderman AV, Leont’ev IN, Fesenko OE, Leon’tev NG (1998) Phys Solid State 40:1204CrossRefGoogle Scholar
  36. 36.
    Kittel C (1951) Phys Rev 82:729CrossRefGoogle Scholar
  37. 37.
    Cross LE (1956) Philos Mag 1:76CrossRefGoogle Scholar
  38. 38.
    Cross LE (1967) J Phys Soc Jpn 23:77CrossRefGoogle Scholar
  39. 39.
    Ahluwalia R, Srolovitz DJ (2007) Phys Rev B 76:174121CrossRefGoogle Scholar
  40. 40.
    Pintilie L, Boldyreva K, Alexe M, Hesse D (2008) J Appl Phys 103:024101CrossRefGoogle Scholar
  41. 41.
    Stephanovich VA, Luk’yanchuk IA, Karkut MG (2005) Phys Rev Lett 94:047601CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • I. B. Misirlioglu
    • 1
    Email author
  • L. Pintilie
    • 2
  • M. Alexe
    • 3
  • D. Hesse
    • 3
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey
  2. 2.NIMPBucharest-MagureleRomania
  3. 3.Max Planck Institute of Microstructure PhysicsHalleGermany

Personalised recommendations