Journal of Materials Science

, Volume 44, Issue 13, pp 3393–3401 | Cite as

Phase separation in immiscible silver–copper alloy thin films

  • Soumya Nag
  • Kristopher C. Mahdak
  • Arun Devaraj
  • Smita Gohil
  • Pushan Ayyub
  • Rajarshi BanerjeeEmail author


Far from equilibrium, immiscible nanocrystalline Ag–Cu alloy thin films of nominal composition Ag–40 at.% Cu have been deposited by co-sputter deposition. Both X-ray and electron diffraction studies indicate that the as-deposited films largely consist of nanocrystalline grains of a single alloyed face-centered cubic (fcc) phase. However, detailed three-dimensional atom probe tomography studies on the same films give direct evidence of a nanoscale phase separation within the columnar grains of the as-deposited Ag–Cu films. Subsequent annealing of these films at 200 °C leads to two effects; a more pronounced nanoscale separation of the Ag and Cu phases, as well as the early stages of recrystallization leading to the breakdown of the columnar grain morphology. Finally, annealing at a higher temperature of 390 °C for a long period of time leads to complete recrystallization, grain coarsening, and a complete phase separation into fcc Cu and fcc Ag phases.


Atom Probe Tomography Alloy Thin Film Compositional Fluctuation Thermodynamic Equilibrium Phase Spinodal Decomposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ma E (2005) Prog Mater Sci 50:413CrossRefGoogle Scholar
  2. 2.
    Murray JL (1984) Metall Trans 15A:261CrossRefGoogle Scholar
  3. 3.
    Alloy Phase Diagrams, ASM handbook, vol 3. ASM International (1992), p 238 Google Scholar
  4. 4.
    Sheng HW, Wilde G, Ma E (2002) Acta Mater 50:475CrossRefGoogle Scholar
  5. 5.
    He JH, Sheng HW, Lin JS, Schilling PJ, Tittsworth RC, Ma E (2002) Phys Rev Lett 89:125507CrossRefGoogle Scholar
  6. 6.
    Duwez P, Willens RH, Klement WJ (1960) J Appl Phys 31:1136CrossRefGoogle Scholar
  7. 7.
    Uenishi K, Kobayashi KF, Ishihara KN, Shingu PH (1991) Mater Sci Eng A 134:1342CrossRefGoogle Scholar
  8. 8.
    Kazakos AM, Fahnline DE, Messier R, Pilione LJ (1992) J Vac Sci Technol A 10:3445CrossRefGoogle Scholar
  9. 9.
    Huang YP, Yang Y, Chen Z et al (2008) J Mater Sci 43(15):5390. doi: CrossRefGoogle Scholar
  10. 10.
    Radiguet B, Etienne A, Pareige P et al (2008) J Mater Sci 43(23–24):7338. doi: CrossRefGoogle Scholar
  11. 11.
    Caballero FG, Miller MK, Garcia-Mateo C (2008) J Mater Sci 43(11):3769. doi: CrossRefGoogle Scholar
  12. 12.
    Capdevila C, Miller MK, Russell KF (2008) J Mater Sci 43(11):3889. doi: CrossRefGoogle Scholar
  13. 13.
    Gohil S, Banerjee R, Bose S, Ayyub P (2008) Scripta Mater 58(10):842CrossRefGoogle Scholar
  14. 14.
    Barber ZH (1990) Vacuum 41:1102CrossRefGoogle Scholar
  15. 15.
    Saunders N, Miodownik AP (1987) J Mater Sci 22:629. doi: CrossRefGoogle Scholar
  16. 16.
    Pagh Almtoft K, Ejsing AM, Bottiger J, Chevallier J, Schell N, Martins RMS (2007) J Mater Res 22:1018CrossRefGoogle Scholar
  17. 17.
    Puthucode A, Kaufman MJ, Banerjee R (2008) Metall Mater Trans A 39(7):1578CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Soumya Nag
    • 1
  • Kristopher C. Mahdak
    • 1
  • Arun Devaraj
    • 1
  • Smita Gohil
    • 2
  • Pushan Ayyub
    • 2
  • Rajarshi Banerjee
    • 1
    Email author
  1. 1.Center for Advanced Research and Technology and Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of Condensed Matter Physics and Materials ScienceTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations